PSN College of Engineering and Technology

Department of Computer Science and Engineering

M.Tech - Information Technology

R 2022- Curriculum and Syllabus (I to IV Semester)

PSN COLLEGE OF ENGINEERING AND TECHNOLOGY

(An Autonomous Institution Recognised by AICTE, New Delhi and Affiliated to Anna University, Chennai) Accredited with A+ Grade by NAAC. An ISO 9001:2015 Certified Institution

Melathediyoor, Tirunelveli – 627 152

REGULATIONS – R2022 (Full Time)

M. Tech - Information Technology

INDEX

SL.	SL. DESCRIPTION				
NO.					
1	VISION AND MISSION OF THE INSTITUTE	3			
2	VISION AND MISSION OF THE DEPARTMENT	3			
3	PROGRAM OUTCOMES (POs)	4			
4	PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)	5			
5	PROGRAM SPECIFIC OUTCOMES (PSOs)	6			
	CURRICULUM				
6	SEMESTER I	7			
7	SEMESTER II	7			
8	PROGRAMME ELECTIVE I	8			
9	PROGRAMME ELECTIVE II	8			
10	PROGRAMME ELECTIVES III	8			
11	PROGRAMME ELECTIVES IV	8			
12	PROGRAMME ELECTIVES V	8			
13	INSTITUTE ELECTIVES	9			
14	SYLLABUS – I SEMESTER	10			
15	SYLLABUS – II SEMESTER	21			
16	SYLLABUS - PROGRAMME ELECTIVE I	31			
17	SYLLABUS - PROGRAMME ELECTIVE II	42			
18	SYLLABUS - PROGRAMME ELECTIVES III	51			
19	SYLLABUS - PROGRAMME ELECTIVES IV	62			
20	SYLLABUS - PROGRAMME ELECTIVES V	73			
21	SYLLABUS - INSTITUTE ELECTIVES	84			

Vision and Mission of the Institute

Vision

Emerge as a pioneer institute inculcating engineering education and skills, research, values and ethics.

Mission

- To achieve greater heights of excellence in technical knowledge and skill development through innovative teaching and learning practices.
- To develop the state of art infrastructure to meet the demands of technological revolution.
- To improve and foster research in all dimensions for betterment of society.
- To develop individual competencies to enhance innovation, employability and entrepreneurship among students.
- To instill higher standards of discipline among students, inculcating ethical and moral values for societal harmony and peace

Vision and Mission of the Department

Vision

To emerge as a preeminence program to produce quality Computer Science and Engineering graduates.

Mission

- > To enhance professional and entrepreneurial skills through industry institute interaction to enable them in getting better placement
- > To promote research and continuing education
- > To train the students according to their discipline to meet dynamic needs of the society

Program Outcomes (POs)

PO's No	KNOWLEDGE	STATEMENTS
1	Engineering Knowledge:	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
2	Problem Analysis:	Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
3	Design / Development of Solutions:	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
4	Conduct Investigations of Complex Problems:	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
5	Modern Tool usage:	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an UN 2 of the limitations.
6	The Engineer and Society:	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
7	Environment and Sustainability:	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
8	Ethics:	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
9	Individual and Team Work:	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10	Communication:	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
11	Project Management and Finance:	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
12	Life-long Learning:	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Educational Objectives (PEOs)

S.No	Торіс	PEOs
PEO1	Fundamental Knowledge	Graduates will be able to perform in technical and managerial roles ranging from design, development and problem solving to suit to the industrial needs
PEO2	Career Development	Graduates will be able to successfully pursue higher education and also Graduates will have the ability to adapt, contribute and innovate new technologies in different domains of Computer Science and Engineering
PEO3	Social Identity	Graduates will be ethically and socially responsible engineers in Computer Science and Engineering disciplines

Program Specific Outcomes (PSOs)

Graduating student shall be able to:

PSO1	Proficient and Innovative with a strong cognizance in the IOT, through the application of acquired knowledge and skills.
PSO2	Design and Implement IOT based solutions for improving operational efficiency by investigating existing industrial environment.

PSN COLLEGE OF ENGINEERING AND TECHNOLOGY (AUTONOMOUS) Department of Computer Science and Engineering

Sl. No	Course code	Course Name	Classification	L	Т	Р	С
		SEMESTER I					
1	CS624001	Applied Mathematics	PC	3	1	0	4
2	IT626001	Advanced Operating Systems	PC	3	0	0	3
		Advanced Data Structures and					
3	CS624003	Algorithms	PC	3	0	0	3
4	CS624004	Cryptography and Hashing	PC	3	0	0	3
5		Programme Elective -I	PE	3	0	0	3
6	AP620004	Research Methodology	IC	3	0	0	3
7	CS624501	Technical Seminar-I	EEC	2	0	0	1
8	CS624101	Data Structures Laboratory	PC	0	0	4	2
9		English for Manuscript Writing	IM	2	0	0	0
		SEMESTER II					
10	IT626002	Big Data Analytics Tools and Techniques	PC	3	0	0	3
		Digital Image Processing Tools and					
11	CS624005	Techniques	PC	3	0	0	3
12	CS624007	Cloud Computing Technologies	PC	3	0	0	3
13	CS624008	Internet Security	PC	3	0	0	3
14		Programme Elective -II	PE	3	0	0	3
15		Programme Elective -III	PE	3	0	0	3
16	CS624102	Image Processing Laboratory	PC	0	0	4	2
17		Literature reading skills	IM	2	0	0	0
		SEMESTER III					
18		Programme Elective-IV	PE	3	0	0	3
19		Programme Elective-V	PE	3	0	0	3
20		Institute Elective	IE	3	0	0	3
21	CS624301	Project Phase - I	EEC	0	0	8	8
		SEMESTER IV					
		Project Phase - II & Journal					
22	CS624302	Publication	EEC	0	0	12	12
23	CS624502	Technical Seminar-II	EEC	2	0	0	1

Distribution of Courses - M.Tech IT (R22)

Sl. No	Subject Code	Subject Name	L	Т	Р	С	Total Periods				
Programme Elective -I [Sem-I]											
1	CS624201	Advanced Database Technologies	3	0	0	3	45				
2	IT626201	Web Technology	3	0	0	3	45				
3	IT626202	Unix Internals	3	0	0	3	45				
4	IT626203	Wireless Sensor Networks	3	0	0	3	45				
5	CS624203	Artificial Intelligence	3	0	0	3	45				

Programme Elective -II [Sem-II]

1	CS624206	Internet of Things	3	0	0	3	45
2	IT626204	Deep Learning	3	0	0	3	45
3	IT626205	Network Security	3	0	0	3	45
4	CS624209	Software Reliability and Metrics	3	0	0	3	45
		Human Computer Interaction	3	0	0	3	45
5	IT626205	Techniques					

Programme Elective -III [Sem-II]

		Advanced Computer Graphics and	3	0	0	3	45
1	IT626207	Animations					
		Software Quality Assurance and	3	0	0	3	45
2	CS624211	Testing					
3	CS624212	Cognitive Computing	3	0	0	3	45
4	CS624213	Social Network Analysis	3	0	0	3	45
5	CS624215	Blockchain Technologies	3	0	0	3	45

Programme Elective -IV [Sem-III]

1	IT626208	Pattern Recognition	3	0	0	3	45
2	IT626209	Parallel Computing	3	0	0	3	45
3	IT626210	Mobile Application Development	3	0	0	3	45
4	IT626211	Virtual and Augment Reality	3	0	0	3	45
5	IT626212	Multimedia Databases	3	0	0	3	45

Programme Elective -V [Sem-III]

		Multimedia and Compression	3	0	0	3	45
1	CS624221	Techniques					
2	IT626213	Remote Sensing	3	0	0	3	45
3	IT626214	Grid Computing	3	0	0	3	45
4	IT626215	Web Mining	3	0	0	3	45
5	IT626216	Software Quality Assurance	3	0	0	3	45

Institute Elective

Sl. No	Subject Code	Subject Name	L	Т	Р	С	Total Periods
1	IT626901	Modern Sensor Technology	3	0	0	3	45
		Decision Support and Intelligent	3	0	0	3	45
2	IT626902	Systems					

I SEMESTER

CS62	4001/ Applied mathematics				
Course Category: Programme	Course Type: Theory	L	Т	Р	C
Core	course Type. Theory	3	0	0	3
Unit I – PROBABILITY AND RA	NDOM VARIABLES				9
Probability - Baye's Theorem and A - Discrete Probability Distributions	Applications - Discrete and Con - Binomial, Poisson and Geom	tinuous etric - (s Rando Continu	om Va 10us	riables
Probability Distributions - Uniform,	Exponential and Normal				
Unit II – QUEUING MODELS					9
Poisson Process - Markovian Queu Machine Interference Model - PollaczekKhintchine Formula	es - Single and Multi-Server M Self Service Queue -Nor	Aodels 1- Ma	- Little rkoviai	e's Foi n Que	rmula - eues -
Unit III – SIMULATION					9
Discrete Even Simulation - Monte - to Queuing systems	- Carlo Simulation - Stochastic	Simul	ation –	Appli	ications
Unit IV – LINEAR PROGRAMM	IING				9
Formulation - Graphical Solution - S and Assignment Problems	Simplex Method - Two Phase N	Method	- Tran	isporta	tion
Unit V- NON-LINEAR PROGRA	MMING				9
Lagrange Multipliers - Equality conditions - Quadratic Programming	Constraints - Inequality Con g.	straints	- Ku	ıhn -	Tucker
		ТО	TAL:	45 PEI	RIODS

IT626001: Advanced Operating Systems														
Course Category: Programme	Course Tune. Theory	L	Т	Р	С									
Core	Course Type: Theory	3	0	0	3									
COURSE OBJECTIVES:														
• To learn the fundamentals of Operation	ating Systems													
• To gain knowledge on Distributed	operating system concepts	5.												
• To gain insight on to the distribute	d resource management co	mponer	nts.											
• To know the components and man	agement aspects of Real ti	ime. Mo	bile op	erating										
 systems To learn about the Linux system and Management. 														
To learn about the Linux system and Management. Unit 1 FUNDAMENTALS OF OPERATING SYSTEMS														
Unit 1 FUNDAMENTALS OF OPE	RATING SYSTEMS													
Overview – Synchronization Mecha	nisms – Processes and	Threads	s - Pro	ocess										
Scheduling – Deadlocks: Detection	. Prevention and Recov	verv –	Model	s of	9									
Resources – Memory Management Te	chniques)			-									
Unit 2 DISTRIBUTED OPERATIN	G SYSTEMS													
Issues in Distributed Operating System – Architecture – Communication Primitives														
- Lamport's Logical clocks - Causal Ordering of Messages - Distributed Mutual Exclusion Algorithms - Centralized and Distributed Deadlock Detection														
Exclusion Algorithms – Centraliz	ed and Distributed De	eadlock	Deteo	ction	9									
Algorithms – Agreement Protocols														
Unit 3 DISTRIBUTED RESOURCE MANAGEMENT Distributed File Systems – Design Issues - Distributed Shared Memory –														
Distributed File Systems - Design	Issues - Distributed S	Shared	Memor	у —										
Algorithms for Implementing Dist	tributed Shared memory	y–Issues	s in I	Load										
Distributing – Scheduling Algorithms – Synchronous and Asynchronous Check														
Pointing and Recovery – Fault Tolerance – Two-Phase Commit Protocol –														
Nonblocking Commit Protocol – Security and Protection														
Unit 4 REAL TIME AND MOBILE	OPERATING SYSTEM	IS												
Basic Model of Real Time Systems -	- Characteristics- Applica	tions of	Real 7	Гime										
Systems – Real Time Task Schedul	ing - Handling Resource	Sharin	g - Mo	obile	0									
Operating Systems -Micro Kernel I	Design - Client Server F	Resource	e Acce	ss –	,									
Processes and Threads - Memory Man	agement - File system													
Unit 5 LINUX SYSTEM AND MAN	AGEMENT													
Linux System: Design Principles -	Kernel Modules - Pro	ocess N	Ianagei	ment										
Scheduling - Memory Management -	- Input-Output Manageme	ent - Fil	le Syste	em -	9									
Interprocess Communication. iOS and	Android: Architecture an	d SDK	Framev	work	-									
- Media Layer - Services Layer - Core	OS Layer - File System													
		Т	DTAL:	45 PE	RIODS									
COURSE OUTCOMES: At the end o	f the course, the student wi	ll be abl	e to											
CO1 : know the basics of operating sys	stems													
CO2 : know the concepts of Distribute	d operating Systems													
CO3 : Understand the Concept of Dist	ributed Resource managen	nent												
CO4 : Learn about the Concept of Real time and mobile operating systems														
CO5 : Understand the concept of Linux and management														

CO PO MAPPING															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3				2										
CO2	3			2											
CO3	2		2												
CO4	2					2									
CO5	2	2													
REFERENCE BOOKS:															
1. Mukesh Singhal and Niranjan G. Shivaratri, "Advanced Concepts in Operating Systems – Distributed, Database, and Multiprocessor Operating Systems", Tata McGraw-Hill, 2001															
2. Abraham Silberschatz; Peter Baer Galvin; Greg Gagne, "Operating System Concepts", Seventh Edition, John Wiley & Sons, 2004															

3. Daniel P Bovet and Marco Cesati, "Understanding the Linux kernel", 3rd edition, O'Reilly, 2005

CS624003: Advan	ced Data structures and	Algoritl	ıms		
Course Category: Programme		L	Т	Р	С
Core	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:					
• To understand the usage of algorith	hms in computing	1			
• To learn and use hierarchical data	structures and its operation	18			
• To learn the usage of graphs and it	s applications				
• To select and design data structure	s and algorithms that is ap	propriat	e for pr	oblem	8
• To study about NP Completeness of	of problems.	FF	r-		
Unit 1 Algorithm and Analysis of Al	lgorithm				
Algorithms – Algorithms as a prob	olem solving technique -	- Time	and S	pace	
complexity of algorithms- Asymptoti	c analysis-Average and v	vorst-ca	se anal	ysis-	0
Asymptotic notation-Importance of	f efficient algorithms-	Recurre	ences:	The	9
Substitution Method – The Recursion-	Tree Method- Data structu	ires and	algorit	hms.	
Unit 2 Hierarchical Datastructures				·	
Binary Search Trees: Basics - Que	rying a Binary search tr	ee – In	sertion	and	
Deletion- Red Black trees: Properties	of Red-Black Trees - Rot	tations –	Inserti	ion –	
Deletion -B-Trees: Definition of B -tr	ees – Basic operations on	B -Trees	s – Del	eting	0
a key from a B-Tree- Heap – Heap In	nplementation – Fibonacc	i Heaps:	structi	ure –	9
Mergeable-heap operations- Decreasi	ng a key and deleting a	node-B	ounding	g the	
maximum degree.					
Unit 3 Graphs					
Elementary Graph Algorithms: Repres	sentations of Graphs – Bro	eadth-Fi	rst Sea	rch –	
Depth-First Search –Strongly Connec	ted Components- Minimu	ım Span	ning T	rees:	
Kruskal and Prim- Single-Source Sh	ortest Paths: The Bellma	n-Ford	algorith	nm –	9
Single-Source Shortest paths in Direct	cted Acyclic Graphs – D	ijkstra's	Algori	ithm;	
All-Pairs Shortest Paths: The Floyd-W	arshall Algorithm				
Unit 4 Algorithm Design Technique	<u>s</u>				
Dynamic Programming: Multi-stage g	raphs – Flow Shop Schedu	iling; Gi	reedy		
Algorithm: Tree vertex Splitting – Job	sequencing with deadline	s; Backt	racking	g:	9
Graph Coloring – Knapsack Problem	-				
Unit 5 NP – Complete and NP - Har	d	T 10	•	ND	
NP-Completeness: Polynomial Time	e – Polynomial-Time	/erificat	10n –	NP-	0
Completeness and Reducibility –	NP-Completeness Proof	s - N	P-Com	plete	9
Problems: Clique Decision Problem –	Traveling Salesman Probl	em.			
				4	DIGES
		T	UTAL:	: 45 PE	RIODS
COURSE OUTCOMES: At the end o	of the course, the student wi	ll be abl	e to		
CO1 : Design algorithms for various c	omputing problems and a	nalyze tł	ne time	and sp	ace
complexity of algorithms.					
CO2 : Identify and implement tree data	a structures and apply the	n to solv	e prob	lems.	
CO3 : Identify and implement graph d	ata structures and apply th	em to so	olve pro	oblems.	
CO4 : Ability to understand and design	n algorithms using approp	riate alg	orithm	design	
techniques for the given problem.					

CO5 : Ability to understand role the NP – Complete and NP – Hard Problems in solving real world problems.

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	1	-	-	-	-	-	-	-	3	-
CO2	3	3	3	3	-	-	-	-	-	-	-	-	2	-
CO3	3	3	3	3	-	-	-	-	-	-	-	-	-	2
CO4	3	3	3	3	-	-	-	-	-	-	-	-	-	1
CO5	3	2	2	2	-	-	-	-	-	-	-	-	-	2

REFERENCE BOOKS:

- 1. S.Sridhar, "Design and Analysis of Algorithms", Oxford University Press, 1st Edition, 2014.
- Adam Drozdex, "Data Structures and algorithms in C++", Cengage Learning, 4th Edition, 2013.
- 3. Ellis Horowitz, SartajShani, SanguthevarRajasekaran, "Fundamentals Of Computer Algorithms". India, Misc, 2010.
- 4. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, "Introduction to algorithms", Second Edition, Prentice Hall of India Ltd
- 5. Mark Allen Weiss, "Data Structures and Algorithms in C++", Pearson Education, 3rd Edition, 2009
- 6. Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, "Data Structures and Algorithms", Pearson Education, Reprint, 2006.

CS624004	: Cryptography and Hashi	ng			
Course Category: Programme		L	Т	Р	С
Core	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:			L I		
• To introduce the fundamental conc security	cepts and techniques in cryp	otograp	hy and 1	networ	k
• To illustrate the working principle	s of various Symmetric Cip	ohers.			
• To explore knowledge on Asymmetry	etric Ciphers.				
• To study system boot and the Init p	process.				
• To learn the various Hash function	l.				
• To realize the Construction.					
Unit 1 INTRODUCTION					
Computer Security Concepts- OSI	Security Architecture-	Securit	y Atta	cks-	
Security Services- Security Mechan	isms-Model for Network	Securi	ty-Class	sical	
Encryption Techniques- Symmetric	c Cipher Model-Substitu	ition '	l'echniq	ues-	
Transposition Techniques- Rotor M	achines- Stegnography- I	Basic C	Concept	s in	9
Number Theory and Finite Fields	-Divisibility and the Di	vision	Algorit	hm-	
Euclidean Algorithm- Modular Arithm	netic-Groups, Rings, and F	ields- F	finite Fi	elds	
of the Form GF(p)	DUDDO				
Unit 2 MODERN SYMMETRIC CI	IPHERS	1	TT1 1		
Block Cipners and the Data Encryptio	n Standard-Block Cipher F	rinciple	es-Ine I	Jata	
Encryption Standard (DES)- Str	engin of DES-Differen	inal a	na Li	near	9
Standard Plack Ciphen Modes of Open	esigni Finicipies-Advan	ceu	Encryp		
Linit 2 A SVMMETDIC CIDHEDS	ation- Stream Ciphers-KC4	•			
Drime Numbers Eermat's and Euler'	s Theorems Testing for	Drimali	v Chi	naca	
Remainder Theorem-Discrete I	ogarithms_ Principles	of	Public-	Kev	
Cryptosystems- RSA Algorithm-	Diffie-Hellman Key Fy	change.	- FlGs	mal	9
Cryptosystem- Elliptic Curve Arithme	tic- Elliptic Curve Cryptog	ranhy	LIG	linui	
Unit 4 HASH FUNCTION	are Emple curve eryptog	rupity			
Block cipher Based hash function - No	on-Block cipher Based has	n functi	on - De	sion	
principles - Methods of Attack on Has	h function			51811	9
Unit 5 CONSTRUCTION					
Theoretic Construction - Hard bit and	Pseudo random bit generat	ion - str	ong one	e-	
way permutation - UOWHF Construct	tion and PBG -Strong one-v	way per	mutatio	n	9
	0				
		т		45 PE	RIODS
COURSE OUTCOMES: At the and a	f the course the student wil	l ha ahl		-10 I L	
COURSE OUTCOMES: At the end of	of the course, the student will	d ident	$\frac{1}{10}$		hilition
in Classical cryptosystems	oncepts to Cryptography an	la laent	ity the v	umera	unities
CO2 · Experiment Symmetric Key ein	her algorithms				
CO2 · Experiment Symmetric-Key Crupto	aranhic techniques				
CO4 · Manipulate the Hash function	graphic icenniques				
CO5 : Demonstrate cryptographic Use	h function to real time one	lication	c		
COS . Demonstrate eryptographie Has	an remotion to rear-time app	incation	0		

CO PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3									3		
CO2	3	3	3		2						3	3	3	
CO3	3	3	2		2						3	3	3	
CO4	3	2	3	2							2	2		2
CO5	3	3	3	2	3						2	2		2

REFERENCE BOOKS:

1. William Stallings, "Cryptography and network Security", Pearson, Sixth edition, 2013.

2. Alan G. Konheim, "Computer security & cryptography", John Wiley & Sons, 2007.

- 3. Josef Pieprzyk Babak Sadeghiyan,"Design of hashing Algoritms ",Springer-Verlag 1993
- 4. Charles P. Pfleeger, Shari Lawrence Pfleeger, "Security in computing", Prentice Hall of India, Third Edition, 2006.
- 5. Wade Trappe, Lawrence C Washington, "Introduction to Cryptography with coding theory", Pearson, Second edition, 2007

6. Behrouz A.Forouzan, "Cryptography and Network Security", Tata McGraw Hill, 2010.

7. W. Mao, "Modern Cryptography – Theory and Practice", Pearson Education, Second Edition, 2007

AP620004 -R	ESEARCH METHODOL	OGY			
Course Category: Institutive core	Course Type: Theory	L	Т	P	С
Course Category: Institutive core	Course Type. Theory	3	0	0	3
COURSE OBJECTIVES:					
• Impart knowledge on basics of res	earch methodology				
• Explore knowledge in technical wr	iting in an efficient manne	r			
• Understand research problem form	ulation and analyses the re	search	related	inform	ation
• Understand the importance of IPR					
• Apply the knowledge of IPR in var	rious research projects				
UNIT - I RESEARCH PROCESS					
Research ethics - Research process:	characteristics and requi	rements	s, Туре	es of	
research, Research process: eight st	tep model - formulating	researc	h prob	olem,	
conceptualizing research design, co	onstructing instrument fo	r data	collec	tion,	9
Selecting a sample, writing a researc	h proposal, collecting dat	a, proc	essing	data,	
writing research report.					
UNIT - II RESEARCH WRITING					
Effective literature studies approache	s - technical document st	ructurin	ıg - ho	w to	
write report and research paper - form	at of research proposal - d	levelopi	ng rese	earch	9
proposal - presentation and assessment	t by a review committee.				
UNIT - III DESIGN OF EXPERIME	ENTS				
Strategy of Experimentation - Type	ical applications of expe	rimenta	al desi	gn -	
Guidelines for designing experimen	ts - Basic statistical con	cepts -	- Statis	stical	9
concepts in experimentation - Regress	ion approach to analysis of	varian	ce.		
UNIT - IV INTELLECTUAL PROP	PERTY				
Patents, Industrial designs and IC la	yout Designs, Trade Mar	ks and	Copyr	ight,	
Geographical Indications, IPR manage	ement: 5Cs model of mana	iging IF	P, Emer	ging	9
issues in IPR.					
UNIT - V ROADMAP FOR PATEN	NT CREATION				
Types of patent - Parts of a patent d	ocument - Terminologies	and co	des use	ed in	
patent document - Patent searching an	nd analysis – Indicators fo	r paten	tability	- IP	9
identification tool – public patent data	a base – Transfer and infr	ingeme	nt of p	atent	-
rights – Patent commercialization.					
		Т	OTAL:	45 PE	RIODS
COURSE OUTCOMES: At the end o	f the course, the student wil	l be abl	e to		
CO1 : Understand that today's world is	s controlled by Computer,	Informa	tion Te	echnolo	ogy, but
tomorrow world will be ruled by ideas	, concept, and creativity.				
CO2 : Correlate the results of any rese	arch article with other publ	ished re	esults. V	Write a	re view
article in the field of engineering					
CO3 : Understand research problem for	ormulation & Analyze resea	arch rela	ated inf	ormati	on and
Follow research ethics					
CO4 : Appreciate the importance of IP	R and protect their intellec	tual pro	operty.		
CO5 : Understand that PR protection p	provides an incentive to inv	entors f	for furt	her rese	earch
work and investment in R & D, which	leads to creation of new ar	nd bette	r produ	cts, an	d in

turn brings about, economic growth and social benefits

CO PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	1	2	1	2	3	1	2		2		1	2			
CO2	2	3	1	3	2	2	2	1			2	2			
CO3	2	2	2	3	3	1	2			1		2			
CO4	3	3	1	1	3	3	2	1	2			2			
CO5	1	1	1	3	3	2	1		1		3	2			

REFERENCE BOOKS:

1. Ranjit Kumar, Research Methodology- A step by step guide for beginners, Pearson Education, Australia, 2005.

2. Ann M. Korner, Guide to Publishing a Scientific paper, Bioscript Press 2004.

3. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

4. Kothari, C. R. Research Methodology - Methods and Techniques, New Age International publishers, New Delhi, 2004.

5. Robert P. Merges, Peter S. Menell and Mark A. Lemley, "Intellectual Property in New Technological Age", Aspen Publishers, 2016

Course Category: Programme Core Course Type: Theory L T P C Core 0 0 4 2 COURSE OBJECTIVES:
Course Type: Theory 0 0 4 2 COURSE OBJECTIVES:
COURSE OBJECTIVES: • To acquire the knowledge of using advanced tree structures. • To learn the usage of heap structures. • To understand the usage of graph structures and spanning trees. • To learn about Huffman Coding LIST OF EXPERIMENTS: 1. Implementation of Merge Sort and Quick Sort-Analysis 2. Implementation of a Binary Search Tree 3. Red-Black Tree Implementation 4. Heap Implementation 5. Fibonacci Heap Implementation 6. Graph Traversals 7. Spanning Tree Implementation 8. Shortest Path Algorithms (Dijkstra's algorithm, Bellman Ford Algorithm) 9. Implementation of Matrix Chain Multiplication 10. Activity Selection and Huffman Coding Implementation COURSE OUTCOMES: At the end of the course, the student will be able to
 To acquire the knowledge of using advanced tree structures. To learn the usage of heap structures. To understand the usage of graph structures and spanning trees. To learn about Huffman Coding LIST OF EXPERIMENTS: Implementation of Merge Sort and Quick Sort-Analysis Implementation of a Binary Search Tree Red-Black Tree Implementation Heap Implementation Fibonacci Heap Implementation Graph Traversals Shortest Path Algorithms (Dijkstra's algorithm, Bellman Ford Algorithm) Implementation of Matrix Chain Multiplication Activity Selection and Huffman Coding Implementation COURSE OUTCOMES: At the end of the course, the student will be able to
 To learn the usage of heap structures. To understand the usage of graph structures and spanning trees. To learn about Huffman Coding LIST OF EXPERIMENTS: Implementation of Merge Sort and Quick Sort-Analysis Implementation of a Binary Search Tree Red-Black Tree Implementation Heap Implementation Fibonacci Heap Implementation Graph Traversals Shortest Path Algorithms (Dijkstra's algorithm, Bellman Ford Algorithm) Implementation of Matrix Chain Multiplication Activity Selection and Huffman Coding Implementation TOTAL: 30 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to
 To understand the usage of graph structures and spanning trees. To learn about Huffman Coding LIST OF EXPERIMENTS: Implementation of Merge Sort and Quick Sort-Analysis Implementation of a Binary Search Tree Red-Black Tree Implementation Heap Implementation Fibonacci Heap Implementation Graph Traversals Spanning Tree Implementation Shortest Path Algorithms (Dijkstra's algorithm, Bellman Ford Algorithm) Implementation of Matrix Chain Multiplication Activity Selection and Huffman Coding Implementation COURSE OUTCOMES: At the end of the course, the student will be able to
 To learn about Huffman Coding LIST OF EXPERIMENTS: Implementation of Merge Sort and Quick Sort-Analysis Implementation of a Binary Search Tree Red-Black Tree Implementation Heap Implementation Fibonacci Heap Implementation Graph Traversals Spanning Tree Implementation Shortest Path Algorithms (Dijkstra's algorithm, Bellman Ford Algorithm) Implementation of Matrix Chain Multiplication Activity Selection and Huffman Coding Implementation COURSE OUTCOMES: At the end of the course, the student will be able to
LIST OF EXPERIMENTS: 1. Implementation of Merge Sort and Quick Sort-Analysis 2. Implementation of a Binary Search Tree 3. Red-Black Tree Implementation 4. Heap Implementation 5. Fibonacci Heap Implementation 6. Graph Traversals 7. Spanning Tree Implementation 8. Shortest Path Algorithms (Dijkstra's algorithm, Bellman Ford Algorithm) 9. Implementation of Matrix Chain Multiplication 10. Activity Selection and Huffman Coding Implementation 5. COURSE OUTCOMES: At the end of the course, the student will be able to
 Implementation of Merge Sort and Quick Sort-Analysis Implementation of a Binary Search Tree Red-Black Tree Implementation Heap Implementation Fibonacci Heap Implementation Graph Traversals Spanning Tree Implementation Shortest Path Algorithms (Dijkstra's algorithm, Bellman Ford Algorithm) Implementation of Matrix Chain Multiplication Activity Selection and Huffman Coding Implementation COURSE OUTCOMES: At the end of the course, the student will be able to
 Implementation of a Binary Search Tree Red-Black Tree Implementation Heap Implementation Fibonacci Heap Implementation Graph Traversals Spanning Tree Implementation Shortest Path Algorithms (Dijkstra's algorithm, Bellman Ford Algorithm) Implementation of Matrix Chain Multiplication Activity Selection and Huffman Coding Implementation TOTAL: 30 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to
 Red-Black Tree Implementation Heap Implementation Fibonacci Heap Implementation Graph Traversals Spanning Tree Implementation Shortest Path Algorithms (Dijkstra's algorithm, Bellman Ford Algorithm) Implementation of Matrix Chain Multiplication Activity Selection and Huffman Coding Implementation TOTAL: 30 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to
 4. Heap Implementation 5. Fibonacci Heap Implementation 6. Graph Traversals 7. Spanning Tree Implementation 8. Shortest Path Algorithms (Dijkstra's algorithm, Bellman Ford Algorithm) 9. Implementation of Matrix Chain Multiplication 10. Activity Selection and Huffman Coding Implementation TOTAL: 30 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to
 5. Fibonacci Heap Implementation 6. Graph Traversals 7. Spanning Tree Implementation 8. Shortest Path Algorithms (Dijkstra's algorithm, Bellman Ford Algorithm) 9. Implementation of Matrix Chain Multiplication 10. Activity Selection and Huffman Coding Implementation TOTAL: 30 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to
 6. Graph Traversals 7. Spanning Tree Implementation 8. Shortest Path Algorithms (Dijkstra's algorithm, Bellman Ford Algorithm) 9. Implementation of Matrix Chain Multiplication 10. Activity Selection and Huffman Coding Implementation TOTAL: 30 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to
 7. Spanning Tree Implementation 8. Shortest Path Algorithms (Dijkstra's algorithm, Bellman Ford Algorithm) 9. Implementation of Matrix Chain Multiplication 10. Activity Selection and Huffman Coding Implementation TOTAL: 30 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to
 8. Shortest Path Algorithms (Dijkstra's algorithm, Bellman Ford Algorithm) 9. Implementation of Matrix Chain Multiplication 10. Activity Selection and Huffman Coding Implementation TOTAL: 30 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to
 9. Implementation of Matrix Chain Multiplication 10. Activity Selection and Huffman Coding Implementation TOTAL: 30 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to
10. Activity Selection and Huffman Coding Implementation TOTAL: 30 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to
TOTAL: 30 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to
TOTAL: 30 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to
COURSE OUTCOMES: At the end of the course, the student will be able to
CO1 : Design and implement basic data structures.
CO2 : Implement advanced data structures extensively
CO3 : Design algorithms using graph structures
CO4 : Design and develop efficient algorithms with minimum complexity using design
techniques
CO5 : Understand and develop Dynamic programming algorithms.
$C \cap \mathbf{D} \cap \mathbf{M} \wedge \mathbf{D} \mathbf{D} \mathbf{I} \cap C$
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 CO1 3 3 3 - - - - - 3 - - - - - 3 - - - - - 3 - - - - - 3 - - - - - - 3 - - - - - - 3 - - - - - - 3 - - - - - - 3 - - - - - - 3 - - - - - - - 3 - - - - - - 3 - - - - - - - 3 - - -
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 CO1 3 3 3 - - - - - 3 - - - - - 3 - - - - - 3 - - - 3 - - - - - 3 - - - - - 3 - - - - - - - 3 - - - - - 3 - - - - - - 3 - - - - - - - 3 - - - - - - 3 - - - - - - - - 3 - - - - - - -
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 CO1 3 3 3 - - - - - - 3 - - - - - 3 - - - - - - 3 - - - - - - 3 - - - - - - 3 - - - - - - - 3 - - - - - 3 - - - 3 - - - 3 - - - - - - 3 - - - 3 - - - - 3 - - - - - 3 - - - 3 - - - -
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 CO1 3 3 3 - - - - - - 3 - CO2 3 - 3 - - - - - - 3 - CO3 3 2 3 - - - - - - 3 - CO4 3 3 2 - - - - - 2 - - - 2 - - - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - - - - - - - - 3 - - 2 2 - - - - - - 2 2 - - - - - - -
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 CO1 3 3 3 - - - - - - 3 - CO2 3 - 3 - - - - - - 3 - CO3 3 2 3 - - - - - - 3 - CO4 3 3 2 - - - - - - 2 - - - - 3 - - 2 - - - 2 - - 2 - - - 3 - - 2 2 - - - - - 2 2 - 2 2 - - - - 2 2 - 2 2 - - - - 2 2 2 3 -
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 CO1 3 3 3 - - - - - - 3 - CO2 3 - 3 - - - - - - 3 - CO3 3 2 3 - - - - - - 3 - CO4 3 3 2 - - - - - - 3 - CO4 3 3 2 - - - - - 2 CO5 2 3 3 - - - - - 2 2 REFERENCE BOOKS: 1 S Sridhar "Design and Analysis of Algorithms" Oxford University Press 1st Edition
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 CO1 3 3 3 - - - - - - 3 - CO2 3 - 3 - 2 - - - - 3 - CO3 3 2 3 - - - - - - 3 - CO4 3 3 2 - - - - - 2 2 CO5 2 3 3 - - - - - 2 2 REFERENCE BOOKS: 1. S.Sridhar, "Design and Analysis of Algorithms", Oxford University Press, 1st Edition, 2014
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 CO1 3 3 3 - - - - - - 3 - CO2 3 - 3 - - - - - - 3 - CO3 3 2 3 - - - - - - 3 - CO4 3 3 2 - - - - - - 2 CO5 2 3 3 - - - - - 2 REFERENCE BOOKS: 1. S.Sridhar, "Design and Analysis of Algorithms", Oxford University Press, 1st Edition, 2014. 2 Adam Drozdex "Data Structures and algorithms in C++" Cengage Learning 4th Edition
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 CO1 3 3 - - - - - - - - 3 - - - - - - - 3 - - - - - - - 3 - - - - - - - 3 - - - - - - 3 - - - - - - - 3 - - - - - - 2 - - - - - - 2 - - - - - 2 - - - - 2 - - - 2 - - - - - 2 - - - -
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 CO1 3 3 - - - - - - - - - - - 3 - - - - - - - - 3 - - - - - - - 3 - - - - - - - 3 - - - - - - - - - - 2 - - - - - 2 - 2 2 3 3 - - - - - 2 2 3 3 - - - - 2 2 3 3 - - - - - 2 2 3 3 - -
POIPO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PS01PS02CO1 3 3 $ -$ <td< td=""></td<>

- algorithms", Second Edition, Prentice Hall of India Ltd
 5. Mark Allen Weiss, "Data Structures and Algorithms in C++", Pearson Education, 3rd Edition, 2009
- 6. Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, "Data Structures and Algorithms", Pearson Education, Reprint, 2006

II SEMESTER

IT626002: Big Data Analytics Tools and Techniques												
Course Category: Programme		L	Т	Р	С							
Core	Course Type: Theory	3	0	0	3							
COURSE OBJECTIVES:					JJ							
• To gain knowledge about the comp	petitive advantages of big d	lata ana	lytics.									
• To understand about the big data fi	rameworks.		5									
• To understand about the features o	f Data Analysis.											
• To learn about the Stream Comput	ing.											
• To gain knowledge on Hadoon rel	ated tools such as HBase.	Cassan	dra Pig	and F	live for							
big data analytics		Cubbull	aru, 115	, und n								
Unit I Introduction to Big Data												
Big Data – Definition Characteristic	Features – Big Data Appl	ications	- Big	Data								
vs Traditional Data - Risks of Big D	Data - Structure of Big Data	ita - Cl	nallenge	es of								
Conventional Systems - Web Data –	Evolution of Analytic Sca	lability	- Evolu	ition	9							
of Analytic Processes Tools and met	hods - Analysis vs Report	ing - N	Iodern]	Data	-							
Analytic Tools	nous manysis vs report		1040111	Data								
Unit 2 Hadoon Frame Work												
Distributed File Systems - Large-Scale	e File System Organization	1 - HD	FS cond	cepts								
- MapReduce Execution Algori	thms using ManReduc	e M	atrix-Ve	ector	9							
Multiplication – Hadoop YARN	units doing maprecade	., 111			-							
Unit 3 Data Analysis												
Safety and Risk – Assessment of Sa	fety and Risk – Risk Be	nefit A	nalvsis	and								
Reducing Risk - Respect for Authorit	v - Collective Bargaining	– Conf	idential	ity –								
Conflicts of Interest – Occupational	Crime – Professional R	ights -	- Empl	ovee	9							
Rights – Intellectual Property Rights ((PR) – Discrimination	-8	_ p1									
Unit 4 Mining Data Streams												
Statistical Methods: Regression mode	elling, Multivariate Analys	sis - Cl	assifica	tion:								
SVM & Kernel Methods - Rule Minin	g - Cluster Analysis, Type	s of Dat	ta in Clu	ıster								
Analysis, Partitioning Methods, Hier	archical Methods. Densit	v Base	d Meth	ods.	9							
Grid Based Methods, Model Bas	ed Clustering Methods,	Clust	ering I	High								
Dimensional Data - Predictive Analyti	cs – Data analysis using R		U	U								
Unit 5 Big Data Frameworks	, ,											
Introduction to NoSQL – Aggregat	e Data Models – Hbase:	Data	Model	and								
Implementations – Hbase Clients -	– Examples – .Cassandr	a: Dat	a Mod	el –								
Examples – Cassandra Clients – Hado	op Integration. Pig – Grun	t – Pig	Data M	odel	0							
– Pig Latin – developing and testing l	Pig Latin scripts. Hive – D	ata Ty	bes and	File	9							
Formats – HiveQL Data Definition	– HiveQL Data Manip	ulation	– Hiv	eQL								
Queries				-								
				1								
		T	OTAL:	45 PE	RIODS							
COURSE OUTCOMES: At the end o	f the course, the student wil	l be abl	e to									
CO1 : To know, how to leverage the in	nsights from big data analy	tics										
CO2 : Know the concepts of Hadoop f	rame work											
CO3 : Know the concepts of Data Ana	llysis											
CO4 : Analyze data by utilizing variou	is statistical and data minin	ig appro	baches									
CO5 : Understand the various NoSql	alternative database models	S										

CO PO MAPPING

~~ .			0												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	2										1		
CO2	2		2	2										1	
CO3	3	2											1		
CO4	3		2	2											
CO5					2										

REFERENCE BOOKS:

David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, NoSQL, and Graph", 2013

Michael Berthold, David J. Hand, -Intelligent Data Analysis, Springer, Second Edition, 2007

Michael Minelli, Michelle Chambers, and Ambiga Dhiraj, "Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses", Wiley, 2013

P. J. Sadalage and M. Fowler, "NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence", Addison-Wesley Professional, 2012

CS624005: Digital	Image Processing Tools and	l Techni	iques		
Course Category: Programme	Course Tures Theorem	L	Т	Р	С
Core	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:					<u> </u>
• To provide the basic knowledge	of Digital Image Processing	g.			
• To Know the various image enhan	ncement techniques.				
• To understand the various concept	s of image segmentation.				
• To Learn about compression techn	iques.				
• To extract features for image analy	vsis and also illustrate 3D i	mage vi	isualiza	tion	
Unit 1 INTRODUCTION TO) DIGITAL IMAGE PR	OCESS	SING		
Image Representation and Image Proc	cessing Paradigm - Elemen	nts of d	igital ir	nage	
processing. Sampling and quantization	n-Relationships between pi	ixels- C	onnecti	vity,	0
Distance Measures between pixels - C	color image (overview, var	ious col	lor mod	lels)-	,
Various image formats bmp, jpeg, tiff,	, png, gif.				
Unit 2 IMAGE ENHANCEMENT					
Enhancement by point processing,	Sample intensity transfor	mation,	Histog	gram	
processing, Image subtraction, Ima	ge averaging, Spatial fil	tering-	Smoot	thing	9
Spatial filters, Sharpening Spatial fil	ters, Frequency domain-	Fourier	Transf	orm,	-
Low-Pass, HighPass, Laplacian, Hom	omorphic filtering.				
Unit 3 IMAGE SEGMENTATION	·	•		1 1	
Edge detection, Thresholding, Regi	on growing, Fuzzy clust	ering,	Water	shed	
algorithm, Active contour models,	Texture feature based se	gmenta	tion, G	raph	9
based segmentation, wavelet ba	sed Segmentation-Applic	ations	01 II	nage	
Unit 4 IMACE COMPRESSION	mation-mistogram based s	egment	ation.		
Lossless compression versus lossv	compression-Measures o	f the o	rompres	ssion	
efficiency- Huf- mann coding-Bitr	lane coding-Shift codes	-Block	Trunce	ation	
coding-Arithmetic coding-Predictive	e coding techniques-L	DISSV (compres	ssion	9
algorithm using the 2-D. DCT transfe	orm-The JPEG 2000 stand	lard Ba	seline 1	OSSV	-
JPEG, based on DWT				j	
Unit 5 FEATURE EXTRACTION	AND 3D IMAGE VISUA	LIZAT	ΓΙΟΝ		
Feature extraction: Histogram based	l features - Intensity fea	tures-C	olor, S	hape	
features-Contour extraction and repre	sentation-Homogenous reg	gion ex	traction	and	
representation. Sources of 3D Data	sets, Slicing the Data set	, Arbit	rary sec	ction	0
planes, The use of color, Volume	tric display, Stereo View	ving, R	Ray trac	cing,	9
Reflection, Surfaces, Multiple con	nected surfaces, Image	processi	ing in	3D,	
Measurements on 3D images					
		T	OTAL:	45 PE	RIODS
COURSE OUTCOMES: At the end of	of the course, the student wi	ll be abl	le to		
CO1 : Understand the basic Concepts	of Digital Image Processin	ng and i	ts equiv	alent o	open
$CO2 \cdot Apply different Algorithm by a$	utilizing Enhancement Tec	hnique	c		
CO2 : Appry unicient Argonulli by t	entation Techniques in on	Image	Process	ina	
CO4 · Explore the possibility of apply	ing various Compression 7	Inage I	ups in a	n Imaa	
CO4. Explore the possibility of apply	ing various Compression I	echniq	ues in a	n mag	,c

processing applications CO5 : Analyze different Feature extraction approaches to image processing applications

CO PO	O MA	PPIN	G											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3				2							2	2	1
CO2	3	2			2						1	2	2	2
CO3	2	2	2		2							1	2	2
CO4	2		2		1						2	2	1	2
CO5	2				2						1	2	2	1
REFE	REN	CE BO	DOKS	5:										
1.	Rafa	el C. C	Gonza	lez an	d Ricl	nard E	. Woo	ods, D	igital I	Image	Process	sing, Tl	nird Ed	••
	Pren	ticeHa	ll, 200	08										
2.	Willi	am K	. Pratt	, Digit	tal Im	age Pr	ocess	ing, Jo	ohn W	iley, 41	h Editi	on, 200)7	
3.	Anil	K. Jai	n, Fui	ndame	ntals	of Dig	ital In	nage I	Proces	sing, P	rentice	Hall of	f India,	1997
4.	Sonk	a, Fitz	zpatric	ck, Me	edical	Image	Proc	essing	and A	Analysi	s, 1st E	Edition,	SPIE,2	2000

CS624007: C	Cloud Computing Techno	logies	
Course Category: Programme		LT	P C
Core	Course Type: Theory	3 0	0 3
COURSE OBJECTIVES:			I
• To understand the concept of c	loud and utility computing	5.	
• To understand the various issu	es in cloud computing.		
• To familiarize themselves with	the lead players in cloud.		
• To appreciate the emergence o	f cloud as the next generat	ion computing p	aradigm.
• To be able to set up a private c	loud.	1 01	e
Unit 1 INTRODUCTION			
Introduction - Historical Developme	ent - Cloud Computing	Architecture – 7	Гhe
Cloud Reference Model – Cloud C	haracteristics – Cloud D	eployment Mod	els:
Public. Private. Community. and Hy	brid Clouds - Cloud Deli	verv Models: Ia	aS. 9
PaaS. SaaS – Open Source Private	Cloud Software: Eucalyr	otus. Open Neb	ula.
Open Stack		, open rece	,
Unit 2 VIRTUALIZATION			I
Data Center Technology - Virtu	alization - Characteristi	cs of Virtuali	zed
Environments - Taxonomy of Virtuali	zation Techniques – Virtu	alization and Cl	oud
Computing – Pros and Cons of	Virtualization - Impleme	entation Levels	of 9
Virtualization - Tools and Mechanism	s Xen VMWare Microso	oft Hyper-V	01
Unit 3 CLOUD COMPLITING MECH	HANISM	nt Hyper v	
Cloud Infrastructure Mechanism: Clo	ud Storage Cloud Usage	Monitor Resou	rce
Replication – Specialized Cloud Med	chanism: I oad Balancer	SI A Monitor P	Pav-
per-use Monitor Audit Monitor Fai	lover System Hypervisor	Resource Clus	ter
Multi Device Broker State Man	agement Database – ('loud Managem	ent 9
Mechanism: Remote Administration	System Resource Manage	ment System S	ΙΔ
Management System Billing Manage	ment System	ment bystem, b	
Unit 4 HADOOP AND MAP REDUC	[¬] F		
Anacha Hadoon Hadoon Man Reduc	22 29 Hadoon Distributed F	ile System Had	000
I/O Developing a Map Reduce Appl	lication - Man Reduce T	upes and Format	te O
Man Reduce Features Hadoon Cluster	er Setup Administering H	Jadoon	18 - 9
Unit 5 SECURITY IN THE CLOUD	A Setup – Auministering I	ladoop	
Basic Terms and Concents Thread	t Agents Cloud Securit	v Threats CL	oud
Security Mechanism: Encryption	Hashing Digital Signs	y Theats – Ch ture Dublic I	Zov
Infrastructure Identity and Access	Management Single Sign	nuic, rubic r	sed 9
Security Groups Hardened Virtual Se	rver Images	I-on, Cloud Da	seu
Security Groups, Hardened Virtual Se	i vei innages		
		TOTAL	
		TOTAL: 4	15 PERIOD
COURSE OUTCOMES: At the end of	of the course, the student wi	ll be able to	
CO1 : Articulate the main concepts, kee	ey technologies, strengths	and limitations o	f cloud
computing			
CO2 : Identify the architecture, infrast	ructure and delivery mode	ls of cloud comp	outing
CO3 : Explain the core issues of cloud	l computing such as securi	ty, privacy and	
interoperability			
CO4 : Choose the appropriate technology	ogies, algorithms and appr	oaches for the re	lated issues
CO5 : Understanding the concepts of	Big data tool and its analys	sis techniques	

CO PO MAPPING

~~ .			0												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	-	-	-	-	-	-	-	-	-	-	-	2	-	Ì
CO2	-	-	-	2	-	-	-	-	-	2	-	-	-	2	
CO3	-	-	3	-	-	-	-	-	-	2	-	-	-	2	ĺ
CO4	-	-	-	2	-	-	-	-	-	-	-	-	-	2	ĺ
CO5	-	-	-	-	2	-	-	-	-	-	-	2	-	2	1

REFERENCE BOOKS:

1. Thomas Erl, Zaigham Mahood, Ricardo Puttini, "Cloud Computing, Concept, Technology and Architecture", Prentice Hall, 2013

2. Toby Velte, Anthony Velte, Robert C. Elsenpeter, "Cloud Computing, A Practical Approach", Tata McGraw-Hill Edition, 2010

3. Rajkumar Buyya, Christian Vecchiola, S. Thamarai Selvi, "Mastering Cloud Computing", Tata McGraw-Hill, 2013

CS62	4008: Internet Security				
Course Category: Programme	Course Type: Theory	L	Т	P	С
Core	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:					
• To study the fundamental concepts	of classical encryption tec	chnique	s and C	rypt Ai	nalysis.
• To understand the principles of sec	eret keys management.				
• To acquire the concepts of IP Secu	rity and its applications				
• To study the concepts of Transport	layer security and its appl	ications	3		
• To learn the working principle of E	Email and public key distri	bution			
Unit 1 INTRODUCTION AND BAS	SIC ENCRYPTION				
Introduction – Essentials of Cryptogra Security Objectives, Communication Encryption – Building Blocks of En Brute Force cracking of Secret Keys, C	aphy, Essentials of Netwo n Security, Legal restri- cryption, Cryptanalysis a Choosing Cryptography Al	orking a ortions, nd Moo gorithm	nd Inte Basics lern Co 1s	rnet, s of odes,	9
Unit 2 LINK ENCRYPTION AND S	SECURE KEY MANAG	EMEN	Г	I	
Link Encryption – In-line Encrypte Configuration, Managing Secret Ke Technology - Random Key Generatio Generators, Manual Key Distributio Centres, Maintaining Keys and System	or, Point to Point Encry eys – Issues in Secret on, Random Seeding, Pseu on, Automatic Rekeying, on Security	yption, Key M dorando Key I	IP Ro lanagen om Nur Distribu	outed nent, nber ntion	9
Unit 3 IP LAYER SECURITY AND	APPLICATIONS				
Basic Issues in IP Security (IPSEC Protocol, IPSEC key management, 7 Private Network (VPN) – Issues in encrypting Router, Site to Site Encryp in IPSEC clients, IPSEC Client, Client	C), Cryptographic Check TCP/IP Network Security VPN, IPSEC proxy cry tion, Remote Access with to Server site access	sums, Protoc ptograp IPSEC	IP Secu ols, Vin ohy, IP – prob	urity rtual SEC lems	9
Unit 4 TRANSPORT LAYER SECU	URITY AND APPLICAT	TONS			
Public Key Cryptography, RSA End Socket Layer (SSL), World Wide W Transaction Security, Transactions on Web Forms, Web Browser with SSL, V	cryption, Key Exchange eb Transaction Security - World Wide Web, Secur Web Server with SSL	with R - Issues ity Alte	SA, Se in Inte rnatives	ecure ernet s for	9
Secure Email - Email Security Issues	Basics of Internet E-Ma	il Offli	ne Mes	sage	
Keying, Digital Signature, Secure Distributing Public Keys, Public Centralized Certification Authority, Good Privacy (PGP)	Email Client, Public K Key Certificates, Certif Hierarchical Certification	Key Ce icate I Autho	rtificate Distribu prity, Pr	tion, retty	9
		Т		45 DF	BIUDE
COURSE OUTCOMES. At the and a	f the course the student wi	I he abl	e to	⊣ Ј ГĽ	MODS
COURSE OUTCOMES: At the end of COL : Interpret basic building blocks of	f encryption for cryptanal	u ut aul	0.10		
CO2 · Identify suitable key generation	technique for secret key n	y 515 1919 001	nent		
CO3 · Apply IP security in VPN and R	emote Access	lanagen	ient		
CO4 · Apply II security III vite and N	transactions				
CO5 : Discover various public key and	l certificate distribution str	ategies	and ite	use in	PGP
200 . Discover various public Rey and		utegies	unu no	ube 111	

C	CO PO	O MA	PPIN	G											
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	CO1	3	2	3									3		
	CO2	3	3	3		2						3	3	3	
	CO3	3	3	2		2						3	3	3	
	CO4	3	2	3	2							2	2		2
	CO5	3	3		2								2		2
R	EFE	REN	CE BO	DOKS	5:										
1	. Rio	chard	E.Smi	th, Int	ernet	Crypt	ograpl	ny, 6tł	n Editi	ion, Pe	earson,	2011			
2	. Tii	m Spe	ed, Ju	anita l	Ellis, '	'Interr	net Seo	curity'	', Else	evier, 2	2006				
3	. Uy	less H	Black,	"Inter	rnet S	ecurit	y Prot	cocols	– Pro	otectin	g IP T	raffic"	, Pears	on Edu	cation,
	20	01	,								C				,
4	. Wa	ade T	rappe,	, Law	rence	C W	ashin	gton,	"Intro	oductio	on to	Crypto	graphy	with	coding
	the	eory",	2nd e	dition	Pears	son, 20)07								
5	. Wi	illiam	Stalli	ngs, C	rypto	graphy	y and	Netw	ork So	ecurity	y, 6th I	Edition	, Pears	on Edu	cation,
	Ma	arch 2	013	U ,		с I.							,		
6	. Br	uce S	Schne	ier a	nd N	eils	Fergu	son,	—Pra	actical	Cryp	otograp	hy∥, F	First E	Edition,
	Wi	ileyDr	eamte	ch Inc	lia Pv	t Ltd, 1	2003								
7	. W.	. Mao	, "Mo	odern	Crypt	ograp	hy –	Theor	y and	Prac	tice", I	Pearson	n Educ	ation, S	Second
	Ed	ition,	2007												
8	. Do	ouglas	R Sin	nson –	-Cryp	otogra	phy –	Theory	y and	practi	cell, Fir	st Editi	ion, CR	C Pres	s,1995

			CS	62410	2: IM	AGE	PROC	CESSI	NG L	ABOR	ATOR	Y		
Cours	e Cat	egory	: Prog	gramr	ne	C		Т	. T L .		L	Т	Р	С
Core						C	ourse	туре	: 1 ne	ory	0	0	4	2
COUF	RSE O	BJE	CTIVI	ES:										
• To	learn	Imag	e Proc	essing	g Tech	nique	S							
• To	displa	ay var	ious I	mages	in Im	age P	rocess	sing						
• To	imple	ement	Vario	us Seg	gmenta	ation '	Techn	iques	in Ima	age Pro	ocessing	3		
• To	imple	ement	Image	e resto	ring te	echnic	ques .							
• To	imple	ement	slicin	ig tech	nnique	for in	nage e	enhano	cemen	t				
LI	ST O	F EX	PERI	MEN	ГS									
1. Disp	olay o	f Gra	yscale	Imag	es Ima	ige, N	legativ	ve of a	n Ima	ge (Bi	nary &	Gray S	cale)	
2. Imp	oleme	ntatio	n of R	elatio	nships	s betw	veen P	ixels.						
3. Imp	lemen	itation	of Tr	ansfor	matio	ns of	an Ima	age.						
4. Imp	lemen	itation	ofim	age re	storin	g tech	nnique	S						
5. Imp	lemen	itation	of Im	age Ir	ntensit	y slic	ing teo	chniqu	le for i	image	enhanc	ement		
6. Imp	lemen	itation	of C	anny e	edge d	etecti	on Alg	gorithi	m					
7. Imp	lemen	it the A	Algori	thm fo	or Edg	e dete	ection	using	Opera	ators				
8. Imp	oleme	ntatio	n of S	egme	ntatior	usin	g wate	ershed	transi	form.				
9. Imp	lemen	itation	of H1	stogra	m Equ	ializa	tion A	lgorit	hm.					
10. Im	pleme	entatio	n of N	on-lii	hear Fi	lterin	g Tec	hnique	es.					
11. Im	pleme	ent the	Algo	rithm	for Ed	ge de	tectioi	n usin	g Ope	rators.				
12. Im	pieme	entatio	n of F	ilterin	ig in fr	equer	ncy do	main						
											TC	DTAL:	45 PEI	RIODS
COUR	RSE O	DUTC	OME	S: At 1	the end	l of th	e cour	se, the	e stude	ent will	be able	e to		
CO1 :	learn	Image	e Proce	essing	Techr	niques	8							
CO2 :	imple	ment	Vario	is Seg	menta	tion 7	Fechni	ques i	n Ima	ge Pro	cessing	•		
CO3 :	imple	ment	slicin	g tech	nique	for in	nage e	nhanc	ement	t				
CO PO	O MA	PPIN	G		·		1	1	1	1	1	1		,
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
$\frac{CO1}{CO2}$	3	2	2		2						2	2	2	1
C02	2	2			1							1	2	<u> </u>

PROGRAMME ELECTIVE -I [SEM-I]

CS624201: A	Advanced Database Technol	ogies			
Course Category: Programme	C	L	Т	Р	С
Elective	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:					
• To know the fundamental Concept	s of Database Management				
• To define a good database design	C				
• To define query processing using v	views				
• To explain the importance of secur	ity in statistical databases				
• To state the principle of design of	distributed database manag	ement	system		
Unit 1 Overview		ement	system		
Overview of a Database Manage	ment Systems – Evolut	tion o	f Data	base	
Management Systems – Basics of the	e Relational Model – De	sign o	f Relati	onal	
Database Schemas – High level Data	base Models: Design prin	ciples	– Algel	oraic	
and Logical Ouery Languages – Da	tabase Language SOL –	SOL	in a Se	erver	9
Environment – Semi-structured Da	ta Model – Data Minii	$n\sigma =$	In a by Inform	ation	
Integration		-8	mom	auton	
Unit 2. Overy Processing and Evalua	ation				
Ouery Processing: An Introduction: o	$\frac{1}{1}$	merv o	cost – s	elect	
operation – sorting – Join operation:	Nested loop – Block nest	ed looi	n = Ind	exed	
nested loop – merge join – hash	ioin – complex ioin – c	other o	peration	ns _	Q
Representation and Evaluation of Oue	ry Expression - Creation of	f Ouers	v Evalua	ation	,
Plans – View and Ouery Processing		Query	Dvulu	ation	
Unit 3 Relational Database Design					
Overview – Basics of the Relational N	Model – Features of Good	Databa	se Desi	on _	
Enhanced ER Tools – Functional	Dependency: Theory and	Norm	alizatic	n = 1	
Multivalued Dependency – Fourth	Normal Forms – Join De	enender	$1 \text{ CV} = \frac{1}{2}$	Fifth	9
Normal Form – Inclusion Dependen	cy – Template Dependen	cv - D	omain	Kev	,
Normal Form – Modeling Temporal D	ata	ey D	omam	ney	
Unit 4 Transaction Management an	d Recovery				
Introduction – Transaction Process	ing – Enhanced Lock I	Based	Protoco	ol _	
Timestamp Based Protocol: Multiple	Granularity – Multi Versio	on Sch	emas. V	/ulti	
Version Timestamp Ordering – Multi	Version Two Phase I ocki	$n\sigma = V$	Veak Le	evels	
of Consistency – Concurrency in I	ndex Structures – Failur	e Clas	sificatio	n =	9
Recovery Algorithms – Buffer Mana	gement – Advanced Reco	verv T	echniqu	es _	
Remote Backun Systems	Gement Revuleed Rees	very r	cenniqu	05	
Unit 5 Database Security and Autho	rization				
Introduction – Database Security: See	ratio - I evels of Databas	se Secu	rity. Se	erver	
Security – Database Connections – 7	Table Access Control $-$ Re	estrictir	nny. Se ng Data	hase	
Access – Access Control: Granting	permissions – Removi	ng nei	mission		0
Statistical Database Security – Multi	level Security – Audit tr	ails in	Databa	se _	,
Vendor Specific E-security	level Security Addit in	ans m	Databa	.50	
		Т	ОТАТ .	15 DE	DIUDE
COUDSE OUTCOMES, At the set	f the correct the standard 11	1 ha aki		ч у Г Е.	KIOD3
COURSE OUTCOMES: At the end o	i me course, me student will	i ve abl	e 10		
CO1. Understand the fundamental CO	nd Evaluation				

CO2 : Learn about Query Processing and Evaluation CO3 : Know & Discuss Relational Database Design CO4 : Understand the concept of Transaction and Analyze the Algorithms to give Recovery Techniques

CO5	Under	rstand	the H	igh Lo	evels o	of Data	a Seci	ırity 8	z Acce	ess Cor	ıtrol				
CO P	O MA	PPIN	G												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3				2									2	
CO2		2		3					2		2		1		
CO3	3	2	2		3						1		2		
CO4	2										2			1	
CO5	1				2				3		3		2		
REFI	EREN	CE BO	OOKS	5:											
1. H	ector-C	Garcia	Molir	1a, Jef	fery D).Ullm	nan, Je	nifer `	Wisdo	om, "Da	atabase	Syster	n – The	e	
С	omplet	e Boo	k" Sta	ndfor	d Univ	versity	, Pear	son P	rentico	e Hill,2	nd Edit	ion			

Dr.Radyanbi Tibor "Advanced Database Management Systems" Tartalom Publication
 Silberschatz, Korth and Sudarshan "Database System Concepts"7th Edition

4. Data base Management Systems, Raghurama Krishnan, Johannes Gehrke, TATA

5. McGrawHill 3rd Edition

6. Jef Van Loon "Database Security Concepts and Challenges" Pearson,5th Edition

IT62620	01: WEB TECHNOLOGY				
Course Category: Programme	Course Tunes Theory	L	Т	Р	С
Elective	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:					
• Understand the fundamentals of ob	piect-oriented programming	g in Java	a		
• Understand the appropriate roles of	f subtyping and inheritance	e. and u	se them	effect	ivelv.
• Implement polymorphic code and l	handle runtime errors using	gexcept	ion han	dling	
• Implement polymorphic code and l	handle runtime errors using	g except	ion han	dling	
• Create user interface applications	using GUI components a	and to	understa	and th	e event
handling principles.					
UNIT I INTRODUCTION TO INTER	NET				
Overview: Evolution of the Internet, H	How Internet Works- Servi	ces off	ered on	the	
Internet: E-mail, Network News, T	elnet, FTP, IRC. Interne	et Acce	ss Metl	nod:	
Dial-up connection, Leased line,	ISDN. Internet Services	Provie	ders (I	SP):	
Architecture, Connection through an	ISP Server, World Wid	e Web	Brows	ing:	9
URL, Homepage, document manag	ement, cookies, plug-in,	online	& off	line	,
Browsing. WWW: History of WWV	V, different web generati	ons, W	3C. Sea	arch	
Engines: Technology Overview. Popu	lar search engines, how to	o registe	er a wet	osite	
on search engines					
UNIT II MARK-UP LANGUAGES	ITMI Hand Section title	hage	lin1, m	ata	
Body Section: Text formatting and ali	anment fonts colors orde	, base,	IIIK, II	ered	
lists links images sounds video ba	ckground tables forms fr	ames I	ntroduc	tion	
to XHTML DHTML Cascading style	sheet inline styles embe	annes. 1 Aded st	vle lini	cing	9
external style sheets, positioning ele	ements, user style sheets	docur	nent of	viect	,
model. XML: Structuring data. XM	IL namespaces. DTD an	d sche	mas. X	ML	
variables, DOM methods, simple API	for XML, web services, ap	plicatio	n of XN	/IL	
UNIT III SCRIPTING LANGUAGES	· · · ·	•		I	
Java Scripts: Introduction to script	ting, user input/output,	memory	conce	epts,	
arithmetic, decision making, contr	rol statement, functions,	array	s, obje	ects.	
VBScripts: Operators, data types and	control statements, funct	ions, ar	rays, st	ring	0
manipulation, classes & objects. Activ	ve Server Pages(ASP): How	w ASP	works, A	ASP	,
objects, file system, objects, Active	Xcomponents .NET over	view, 2	XML: C	Case	
study					
UNIT IV WEB DEVELOPMENT US	ING JAVA	A 1		1 .	
Overview of Java, Use of Java to	r web development. Java	a Appl	ets: Ap	plet	
architecture, applet class, me-cycle	e of applets, display in UTML applet tag page	ethods	reques	ung	0
applets Servlets: Servlet architecture	, iff will applet tag, pas	HTTP	nost &	2 ret	9
request multi-tier application using IF	BC from servlet	111 11	post c	egei	
UNIT V ISP AND WEB SERVERS					
JSP: Architecture, standard actions	JSP with JDBC. J2EE &	EJB:	Compo	nent	
architecture, introducing enterprise Jay	va Beans, J2EE Technolog	ties, for	indation	for	
EJB, EJB objects and Bean Instances	. Web Servers (IIS/ PWS	&Apa	che): H	ГТР	9
request types, system architecture, o	client-side scripting, acce	ssing v	veb ser	vers	
requesting documents					

TOTAL: 45 PERIODS

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1 : Understand the fundamentals of object-oriented programming in Java

CO2 : Understand the appropriate roles of subtyping and inheritance, and use them effectively

CO3 : Implement polymorphic code and handle runtime errors using exception handling

CO4 : To identify the generic classes and methods to implement an application

Use streams to store and retrieve data from database/files

CO5 : Create user-interface applications using GUI components and to understand the event handling principles

CO PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	2							2	1	
CO2	3	2	2	1	2							2	1	
CO3	3	2	2	2	2							2		1
CO4	3	2	2	1	2							2		1
CO5	3	2	2	2	2							2		1

REFERENCE BOOKS:

- 1. ATimothy Budd, "An Introduction to Object-Oriented Programming", Third Edition, PearsonEducation, 2008
- 2. Paul Deitel and Harvey Deitel, "Java How to Program (Early Objects)", Tenth Edition, Pearson Prentice Hall 2014

3. Jesse Feiler, Managing the Web Based Enterprise[Morgan Kaufmann]

4. Chuck Musciano & Bill Kennedy, HTML & XHTML [SPD]

5. D. Hunter, et. Al. Beginning XML [WROX]

6. R. Kalakota, A.B. Whinston, Frontier of Electronic Commerce [Addition-Weslay]

IT6	26202: Unix Internals				
Course Category: Programme	Course Type, Theory	L	Т	P	С
Elective	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:					
• To introduce the architecture o	f the Unix Operating System	m			
• To understand the buffer struct	ure, the inodes representati	on and	super b	lock.	
• To cover various system calls a	and its usage.				
• To study system boot and the I	nit process.				
• To introduce process states, sig	nals and process schedulin	g.			
To understand memory manage	ement and I/O sub system				
Unit 1 GENERAL OVERVIEW OF	THE SYSTEM				
History – System structure – User	perspective - Operating	system	service	es –	
Assumptions about hardware – Intro	duction to the kernel $-A$	Archited	cture of	the	9
UNIX operating system – Introduction	n to system concepts – Kei	rnel dat	a struct	ures	
- System administration					
Unit 2 BUFFEK CACHE AND FIL	E SUBSYSIEM ffor Dool Scongrigg for D	otrious	1 of D	ffor	
Advente gos and Disadvente gos of the	Der Pool – Scenarios for R	Popro	1 01 Bu	ner-	
Files – Inodes – Structure of a Regul	ar File – Directories – Co	nversio	n of a	II OI Path	0
Name to an Inode – Super Block –ir	an The Directories Co order assignment to a New	File-A	llocatio	n of	•
Disk Blocks	iode ussignment to u riew	1 110 7 1	nocatio		
Unit 3 SYSTEM CALLS FOR THE	FILE SYSTEM				
Open – Read – Write – File and record	l locking - Adjusting the po	osition	of file I	/0 –	
Lseek – Close – File creation - Creation	on of special files -Changin	g direct	tory - ro	oot –	0
owner - mode -stat and fstat - Pip	es – Dup – Mounting an	d unm	ounting	file	9
systems – link – unlink			-		
Unit 4 PROCESSES					
Process states and transitions - Layout	of system memory - The c	ontext	of a pro	cess	
- Saving the context of a process - N	Manipulation of the proces	ss addr	ess spa	ce –	
sleep - Process Control - Process of	creation – Signals - Proc	ess ter	minatio	on –	9
Awaiting Process termination – Invol	king other programs – user	r id of	a proce	ess –	
Changing the size of a process				LOIDO	
Unit 5 PROCESS SCHEDULING A	ND MEMORY MANAG	EMEN	T POL)
A hybrid system with swaming and d	lomand paging The LO	-Dema	and Pag	ging-	0
A hybrid system with swapping and d interfaces – Disk Drivers – Terminal d	lemand paging – The I/O's	ubsyste	m - D	lver	9
		Т	OTAL:	45 PE	RIODS
COURSE OUTCOMES: At the end o	f the course, the student will	l be abl	e to		
CO1 : Apply the operating system serv	vices for UNIX architecture	•			
CO2 : Identify the appropriate inode, b	ouffer and super block for U	JNIX fi	ile syste	em	
CO3 : Implement various system calls	for file system				
CO4 : Implement various system calls	for process management				
CO5 : Apply scheduling and memory	management strategies for	process	les		
CO PO MAPPING

			-												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3		2									3			
CO2	3	2										3	1		
CO3	3	2	2		2							2	1		
CO4	3	2	2		2							2		1	
CO5	3	3										2		1	
DEEE	DEN														

- 1. Maurice J. Bach, "The Design of the Unix Operating System", Fourth Edition, Pearson Education, 2015
- 2. Uresh Vahalia, "Unix Internals: The New Frontiers", Pearson Education, 2008
- 3. S. J. Leffler, M. K. Mckusick, M. J. .Karels and J. S. Quarterman., "The Design AndImplementation of the 4.3 BSD Unix Operating System", Addison Wesley, 1998
- 4. Prabhat K. Andleigh, "Unix System Architecture" Prentice Hall, 1990

IT626203	: Wireless Sensor Networl	ks			
Course Category: Programme	Course Tunes Theory	L	Т	Р	С
Elective	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:					
• To be aware of the Challenges and	architecture of Wireless S	ensor N	etwork	s.	
• To get familiarized with different of	communication protocols a	nd netw	ork con	mponei	nts in
WSN	-			-	
• To provide up-to-date knowledge of	of wideband wireless comr	nunicati	on tech	iniques	
Unit 1 OVERVIEW OF WIRELESS	SENSOR NETWORKS				
Definition, advantages, Applications	with examples - Types	of app	olication	ns –	
Challenges for Wireless sensor netwo	orks – Characteristic requi	rements	– requ	uired	0
mechanisms – Comparison of Mot	oile ad hoc networks ar	nd wire	less se	nsor	,
networks					
Unit 2 WIRELESS SENSOR NETWO	ORK ARCHITECTURES				
Single–Node Architecture – Hardwa	re Components – Energ	y Cons	umptio	n of	
Sensor Nodes – Operating Systems	and Execution Enviror	iments	– Netv	work	9
Architecture – Sensor Network Scen	arios – Optimization Go	als and	Figure	es of	-
Merit – Design Principles and service	interfaces – Gateway Cond	cepts			
Unit 3 COMMUNICATION PROTO	COLS	a p	1	T	
Physical Layer and Transceiver Desi	gn Considerations – MA	C Proto	$\cos - \frac{1}{2}$	Low	
Duty Cycle Protocols and Wakeup	Concepts – Schedule –	based	protoco	018 –	0
Address and Name Management –	Assignment of MAC	Address	es — 1	lime	9
multicast Geographic routing Data	- Energy Efficient Unic	asi, dro	aucast	and	
Unit 4 LOCALIZATION AND POST	Centric Kouting				
Properties of localization and pos	itioning Provimity	Trilate	ration	and	
Triangulation – Single-hon localization	n = Positioning in multi-	-hon en	vironm	ents	
Topology Control – Controlling topol	ogy in flat networks – Hi	erarchic	al netw	orks	9
by dominating sets and clustering -0	Combining hierarchical to	ologies	and po	ower	,
control – Adaptive node activity		50105105	una po	, CI	
Unit 5 TRANSPORT LAYER AND (DUALITY OF SERVICE				
Coverage and deployment – Reliable	e data transport – Single	packet	delive	rv –	
Block delivery – Congestion contro	l and rate control – Ad	vanced	applica	ation	9
support – Security and Application spe	ecific support		TT		-
	**				
		Т	DTAL:	45 PE	RIODS
COURSE OUTCOMES: At the end o	f the course the student wi		e to		
CO1 : Explain the significance of sens	or network mechanisms				
CO2: Explain the various architecture	s of sensor network				
CO3: Describe the roles of supporting	communication protocols	as how	they as	sist W	ireless
Sensor Networks	, communication protocors	as 110 w	they as		101035
CO4 · Compare the performance of dit	fferent techniques applied	for node	positic	ning a	nd
localization in wireless sensor network		101 110 44	positio	,g u	114
CO5 : Explain how transport laver med	- chanisms applied to achiev	ve the re	auired (OoS	
			1		

CO PO MAPPING

	-		-											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	2	-	-	-	-	-	-	-	-	-	-	1	-
CO2	-	-	-	2	-	-	-	-	-	2	-	-	-	-
CO3	2	-	-	-	-	-	2	-	-	-	-	-	-	-
CO4	-	-	-	2	-	-	-	-	-	-	-	-	-	-
CO5	-	-	-	-	2	-	-	-	-	-	-	2	-	-
DEEE	DENI			۲										

- 1. Holger Karl & Andreas Willig, "Protocols and Architectures for Wireless Sensor Networks", John Wiley, 2014
- 2. KazemSohraby, Daniel Minoli, &TaiebZnati, "Wireless Sensor Networks Technology, Protocols and Applications", John Wiley, 2011
- 3. Anna Hac, "Wireless Sensor Network Designs", John Wiley, 2003

Course Category: Programme ElectiveCourse Type: TheoryLTPC3003COURSE OBJECTIVES:•To gain knowledge about the basics of artificial intelligence.•To understand the basics of Problem solving problems.•To understand about the knowledge representation•To lace a bout the fratement of intelligence.
Elective Course Type: Theory 3 0 0 3 COURSE OBJECTIVES: Image: State of the state of
COURSE OBJECTIVES: • To gain knowledge about the basics of artificial intelligence. • To understand the basics of Problem solving problems. • To understand about the knowledge representation • To here about the fratement of intelligence.
 To gain knowledge about the basics of artificial intelligence. To understand the basics of Problem solving problems. To understand about the knowledge representation
 To understand the basics of Problem solving problems. To understand about the knowledge representation
• To understand about the knowledge representation
To be made and the fractioner of interview of the second
• I o learn about the features of intelligent agents.
• To learn about the details of applications of AI
Unit 1 Introduction
Introduction–Definition - Future of Artificial Intelligence – Characteristics of
Intelligent Agents– Typical Intelligent Agents – Problem Solving Approach to 9
Typical AI problems
Unit 2 Problem Solving methods
Problem solving Methods - Search Strategies- Uninformed - Informed - Heuristics -
Local Search Algorithms and Optimization Problems - Searching with Partial
Observations - Constraint Satisfaction Problems – Constraint Propagation - 9
Backtracking Search - Game Playing - Optimal Decisions in Games – Alpha - Beta
Pruning - Stochastic Games
Unit 3 Knowledge Representation
First Order Predicate Logic – Prolog Programming – Unification – Forward
Chaining-Backward Chaining – Resolution – Knowledge Representation -
Ontological Engineering-Categories and Objects – Events - Mental Events and 9
Mental Objects - Reasoning Systems for Categories - Reasoning with Default
Information
Unit 4 Software Agents
Architecture for Intelligent Agents - Agent communication - Negotiation and
Bargaining – Argumentation among Agents – Trust and Reputation in Multi-agent 9
systems
Unit 5 Applications
AI applications - Language Models - Information Retrieval- Information
Extraction – Natural Language Processing - Machine Translation – Speech 9
Recognition – Robot – Hardware – Perception – Planning – Moving
TOTAL: 45 PERIODS
COURSE OUTCOMES: At the end of the course, the student will be able to
CO1 : Know the basics of Artificial intelligence
CO2 : Know the concepts of problem Solving methods
CO3 : Learn the concept of Knowledge Representation in AI
CO4 : Understand the characteristics of Software agents
$CO5$: analyze about the applications of ΔI
CO PO MAPPING
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2
CO1 3 2 2 2 1
CO2 2 2 2 2 2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

- 1. S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach", Prentice Hall, Third Edition, 2009
- 2. I. Bratko, —Prolog: Programming for Artificial Intelligencel, Fourth edition, Addison-Wesley Educational Publishers Inc., 2011
- 3. M. Tim Jones, —Artificial Intelligence: A Systems Approach(Computer Science), Jones and Bartlett Publishers, Inc.; First Edition, 2008
- 4. Nils J. Nilsson, —The Quest for Artificial Intelligencel, Cambridge University Press, 2009

PROGRAMME ELECTIVE -II [SEM-II]

CS624206: Internet of Things												
Course Category: Programme	Corre	Tune. The	0.88	L	Т	Р	С					
Elective	Cour	se Type: The	ory	3	0	0	3					
COURSE OBJECTIVES:												
• To identify the components of I	oT.											
• To analyze various protocols of	IoT.											
• To design portable IoT using ap	propriate	ooards.										
• To design business Intelligence	and Inform	nation Securit	y for V	VoT.								
• To develop schemes for the app	lications of	f IOT in real t	ime sc	enarios	5							
Unit 1 Introduction to IoT												
Internet of Things-Components-	Physical	and Logical	Desi	gn-IoT	Enab	oling						
Technologies-IoT Deployment T	emplates-	IoT Domai	ins-IoT	and	M2M	-IoT	9					
Platforms and Design Management												
Unit 2IoT Architectures												
M2M High-level ETSI architecture-IETF Architecture for IoT-OGC Architecture-												
IoT Reference Model-Domain	Model-Inf	ormation Mo	odel-Fu	unction	al Mo	odel-	9					
Communication Model-IoT Sample Architectures												
Unit 3 IoT Protocols												
Protocol Standardization for IoT-Efforts-M2M and WSN Protocols–SCADA and												
RFID Protocols Unified Data S	Standards–	Protocols–IEI	EE 80	2.15.4	-BAC	CNet	9					
Protocol–Modbus-Zigbee Architecture– Network layer–6LowPAN -CoAP-Security												
Unit 4 Building IoT using Raspberry Pi and Arduino												
Building IOT with RASPERRY P	-IoT Syst	ems-Logical I	Design	using	Python	-IoT						
Physical Devices & Endpoints-Io	Γ Device-	Building Bloc	ks-Ra	spberry	v Pi-Bo	oard-	9					
Linux on Raspberry Pi-Raspberry	Pi Interfa	ces-Program	ning F	Raspbei	rry Pi	with	,					
Python-Other IoT Platforms-Arduin	10											
Unit 5 Case Studies and Practices												
Real world design Constraint	s-Applicat	ons-Asset n	nanage	ement,	Indus	strial						
automation, smart grid, Commercia	l building	automation, S	smart c	ities-p	articipa	tory	0					
Sensing-Data Analytics for IoT-S	Software a	2 Managemer	nt Too	ls for	$\begin{bmatrix} IoT \\ C \end{bmatrix}$	loud	9					
Storage Models & Communication	APIs-Clo	ud for IoT-A	mazon	Web S	Services	s for						
101												
				TC)TAL:	45 PEI	RIODS					
COURSE OUTCOMES: At the en	d of the co	urse, the stude	nt will	be able	e to							
CO1 : Explain the significance of the	ne compor	ents of IoT										
CO2 : Explain the various protocol	s of IoT											
CO3 : Describe the roles of portable	e IoT usin	g appropriate b	ooards									
CO4 : Compare the performance of	business	ntelligence an	d Info	rmatio	n Secur	ity for	WoT					
CO5 : Explain schemes for the app	ications of	IOT in real ti	ime sce	enarios								
CO PO MAPPING	1 1			1	1	1	,					
PO1 PO2 PO3 PO4 PO5	PO6 PO	7 PO8 PO9	PO10	PO11	PO12	PSO1	PSO2					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	- 2		-	-	-	2	-					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			-		-	-	2					
CO4 2 -			-	-	-	-	2					
CO5 2			-	-	2		2					

- 1. HonboZhou,"The Internet of Things in the Cloud: A Middleware Perspective" CRC Press 2012
- 2. Luigi Atzori, Antonio Lera, Giacomo Morabito, "The Internet of Things: A Survey", Journal on Networks, Elsevier Publications, October, 2010
- 3. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things Key applications and Protocols", Wiley, 2012

IT6	26204: Deep Learning				
Course Category: Programme	Course Type Theory	L	Т	Р	С
Elective	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:					
• To present the mathematical, stati networks	stical and computational c	halleng	es of b	uilding	neural
• To study the concepts of deep lear	ning				
• To introduce dimensionality reduc	tion techniques				
• To enable the students to know dee	ep learning techniques to su	ipport r	eal-time	e appli	cations
• To examine the case studies of dee	ep learning techniques				
Unit 1 INTRODUCTION					
Introduction to machine learning- Lin regression) - Intro to Neural Nets: W network: loss functions, back propaga networks as universal function approx	near models (SVMs and Po that a shallow network con ation and stochastic gradie imates	erceptro nputes- nt desc	ons, log - Trainin ent- Ne	istic ng a eural	9
Unit 2 DEEP NET WORKS	habilistic Theory of Deer		nina T	Doolr	
propagation and regularization, batch Nets-Deep Vs Shallow Networks Cor	n normalization- VC Dimensional Networks- Gen	ension erative	and Ne Adversa	arial	9
Unit 3 DIMENTIONAL ITY DEDI	CTION				
Linear (PCA LDA) and manifold	LIUN Is matric learning A	uto en	coders	and	
dimensionality reduction in networks AlexNet, VGG, Inception, ResNet - batch normalization, hyperparameter of	- Introduction to Convne Training a Convnet: we optimization	t - Arc ights ir	hitectur hitializat	es – tion,	9
Unit 4 OPTIMIZATION AND GEN	ERALIZATION				
Optimization in deep learning- No Stochastic Optimization Generalizati Networks- Recurrent networks, LST Models- Word-Level RNNs & Deep Artificial Neuroscience	on-convex optimization for on in neural networks- S TM - Recurrent Neural N Reinforcement Learning -	or deep patial 7 Vetwork Comp	netwo Fransfor Langu utationa	rks- mer lage al &	9
Unit 5 CASE STUDY AND APPLIC	CATIONS				
Image net- Detection-Audio Wave N Joint Detection BioInformatics- Face I Image Captions	et-Natural Language Proce Recognition- Scene Unders	essing V tanding	Word2V g- Gathe	ec - ring	9
	6.4	T	OTAL:	45 PE	RIODS
COUKSE OUTCOMES: At the end of	of the course, the student will	i be abl	e to		
CO2 : Implement various days laws	nng na modela				
CO2 : Implement various deep learnin	g models				
CO4: Analyze optimization and const	relization in door loarning				
CO5 · Explore the deep learning and	cations				

CO PO MAPPING

			-												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	1
CO1	2	2	-	-	-	-	-	-	-	-	-	-	-	-	1
CO2	-	I	-	2	2	-	-	1	-	2	-	-	-	-	1
CO3	-	I	2	2	-	-	-	-	-	2	-	-	-	-	
CO4	-	-	-	2	2	-	-	-	-	-	-	-	-	-	
CO5	-	-	-	-	2	-	-	-	-	-	-	2	-	-	L.

REFERENCE BOOKS:

1. Cosma Rohilla Shalizi, Advanced Data Analysis from an Elementary Point of View, 2015

2. Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013

3. Ian Goodfellow, YoshuaBengio, Aaron Courville, Deep Learning, MIT Press, 2016

4. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015

IT62	6205: Network Security				
Course Category: Programme	Course Type: Theory	L	Т	P	С
Elective	Course Type. Theory	3	0	0	3
COURSE OBJECTIVES:					
• To introduce principal concepts, m	ajor issues, technologies, a	and basi	c appro	aches i	n
Network security.					
• To review various algorithms on ke	ey management.				
• To explain the principles of various	s authentication mechanism	n			
• To understand the key managemen	t and distribution system.				
• To familiarize the ability to examin	ne and analyze various atta	cks and	web se	curity	
Unit 1 INTRODUCTION					
An Overview of Computer Security	y Concepts – OSI Secu	rity Ar	chitectu	re -	
Security Attacks - Security Service	es -Security mechanisms	- Ciphe	er mod	el –	0
Substitution Techniques – Transposit	tion Techniques - Encry	ption A	lgorith	ms -	9
Confidentiality					
Unit 2 ALGORITHMS FOR SECU	RITY				
Data Encryption Standard-Block ciphe	er principles-block cipher i	nodes o	f operation	tion-	
Advanced Encryption Standard (AES	S)-Triple DES - Blowfis	h-RC5	algorith	nm -	
Public key cryptography: Principle	s of public key crypto	systems	s-The	RSA	9
algorithm-Key management - Diffi	e Hellman Key exchan	ge- Ell	iptic c	urve	
arithmetic-Elliptic curve cryptography					
Unit 3 HASH FUNCTIONS AND D	IGITAL SIGNATURES				
Authentication requirement – Authen	tication function – MAC	– Hash	functi	on –	
Security of hash function and MAC	-MD5 - SHA - HMAC	– CMA	C - Di	gital	9
signature and authentication protocol	s – DSS – ELGamal DS	SS - SC	chnoor	DSS	2
Scheme-RSA-PSS Digital signature al	gorithm				
Unit 4 KEY MANAGEMENT AND	DISTRIBUTION				
Symmetric Encryption – Symmetric	Decryption – Distribution	n of pu	blic ke	ys –	
X.509 Certificates – Public key Infra	astructure – User Authen	tication	protoc	ol –	9
Remote user Authentication principles	s – Kerberos-Federated Ide	entity m	anagen	nent-	
Personal Identity verification					
Unit 5 BRIEF SURVEY OF INTER	NET SECURITY	Tarran	Carri	4	
ITANSPORT LEVEL Security – web sec	Windows Network Second	Layer		1y - 11	
HITPS JUO - Secure Shell SSH -	wireless Network Secur	lly – II Securi	2EE 80	2.11 7D	0
WIFELESS LAIN – WAP End to End S	agil IP Socurity Polic		ly – PC	JP – Kou	9
S/MINE –Domain Keys identified in	iali- if Security – Fond	10s - 11	liternet	Кеу	
BACHANGE					
		T	OTAL:	45 PE	RIODS
COURSE OUTCOMES: At the end o	f the course, the student wi	ll be abl	e to		
CO1 : Have fundamental knowledge of	n Network security				

CO2 : Know about the various network security algorithms CO3 : Understand the hash functions and digital signatures for network security

CO4 : Analyze the key management and distribution system CO5 : Analyze the Internet security

		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CC	D1	3	2	2									3		
CC)2	3	2	3		2						2	3	1	
CC)3	3	2	2		2						2	3	1	
CC)4	2											3		1
CC)5	2				2							2		1
RE	FE	REN	CE BO	OOKS	5:										
1	W.	7:11:0.00	Stoll	inaa (~~~	anonh		Natur	orle C	annite	Durin a		nd Dra	tiona	

1. William Stallings, Cryptography and Network Security: Principles and Practices, Seventh Edition 2016

2. Behrouz A. Ferouzan, "Cryptography & Network Security", Tata McGraw Hill, 2015

3. Man Young Rhee, Internet Security Cryptographic Principles, Algorithms and Protocols, Wiley, 2003

CS624209: S	oftware Reliabilit	ty and M	etrics									
Course Category: Programme	Course Type: 7	Theory	L	Т	Р	С						
Elective	Course Type. I	I neor y	3	0	0	3						
COURSE OBJECTIVES:												
• Learn different definitions of softw	ware quality											
• Know different notions of defects	and classify them											
• Understand the basic techniques of	f data collection a	nd how t	o apply t	them								
• Learn software metrics that define	relevant metrics i	in a rigor	ous way	•								
• Gain confidence in ultra-high relia	ability.											
Unit 1 INTRODUCTION TO SOFT	FWARE RELIAE	BILITY										
Basic Concepts – Failure and Faults –	- Environment – A	Availabili	ty –Mod	leling –	uses							
- requirements reliability metrics -	design & code 1	reliability	/ metric	s – tes	sting	9						
reliability metrics												
Unit 2 COMPARISON OF SOFTW	ARE RELIABIL	LITY MO	DDELS		-							
Concepts – General Model Character	ristic – Historical	l Develo	pment o	f mode	els –							
Model Classification scheme – Mark	kovian models – (General	concepts	S - Ger	heral	9						
Poisson Type Models – Binomial T	ype Models – Po	Disson Ty	pe mod	els - F	ault							
reduction factor for Poisson Type mod	dels		DELC									
Unit 3 COMPARISON OF SOFT W	ARE RELIABIL		JDELS	of M	a dal							
Comparison Criteria – Failure Data –	- Comparison of Time			y OI M ondor T	Time							
Modeling Limiting Pasourea Cor	omparison or Time		lis – Cai modol		line	9						
Modeling – Linning Resource Col	Modeling – Limiting Resource Concept – Resource Usage model – Resource											
Unit 4 FUNDAMENTALS OF ME		The vais										
Measurements in Software Engin	eering – Scope	of Sc	ftware	metric	s –							
Measurements theory – Goal bas	sed Framework	- Softw	vare M	easurer	nent	9						
Validation		2010				-						
Unit 5 MEASURING SOFTWARE	PRODUCT											
Measurement of Internal Product Attr	ibutes – Size and S	Structure	– Exter	nal Pro	duct							
Attributes - Measurement of Qualit	y – Software Re	eliability:	Measur	rement	and	9						
Prediction	-	-										
			TO	DTAL:	45 PEI	RIODS						
COURSE OUTCOMES: At the end of	of the course, the st	tudent wi	ll be able	e to								
CO1 : Understand basic concepts of so	oftware reliability											
CO2 : Perform some simple statistical	analysis relevant	to softwa	are meas	uremen	t data							
CO3: Use from practical examples bo	oth the benefits and	d limitati	ons of se	oftware	metric	s for						
quality control and assurance												
CO PO MAPPING												
PO1 PO2 PO3 PO4 PO5 P	PO6 PO7 PO8 P	PO9 PO1) PO11	PO12	PSO1	PSO2						
CO1 3 2			-	-	2	-						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		- 2	-	-	-	2						
		- Z	-	-	-	Z						
1 John D. Musa —Software Peliabi	ility Engineering	Tata Mo	Graw H	ill 100	9							
2 John D. Musa Anthony Jan	nino KazuhiraO	kumoto		ware	/ Reliahi	lity _						
Measurement Prediction Applica	ation Series in So	ftware F	ngineeri	ng and	Techn	ology						
McGraw Hill, 1987				and								

	IT626205: Human Computer Interaction Techniques													
Cours	e Cat	egory	: Prog	gramr	ne	C		T	. TI		L	Т	Р	С
Electi	ve	0.				C	ourse	Type	e: I neo	ory	3	0	0	3
COU	RSE C)BJE(CTIVI	ES:										
• To	know	v how	to ana	lyze a	nd co	nsider	user"	s need	l in the	intera	ction s	system		
• To	under	rstand	vario	us inte	eractio	n desi	ign teo	chniqu	ies and	mode	ls	-		
• To	under	rstand	the th	eory a	und fra	amewo	ork of	HCI						
• Un	dersta	and an	d anal	yze th	e cog	nitive	aspec	ts of h	uman	- mac	hine in	teractio	on	
Unit 1	INT	RODI	UCTI	ON	Ŭ		•							
Found	ation -	– Hun	nan –	Comp	uter –	Intera	oction	– Para	adigms	s - Wh	at is H	CI –		
Comp	Components – Cognitive Framework – Perception and Representation – Attention 9													0
and Memory Constraint – Knowledge and Mental Model – Interface Metaphors – 9													9	
Input – Output														
Unit 2 DESIGN PROCESS														
Interac	Interaction Styles – Interaction Design Basics – HCI in the Software Process –													
Design	n Rule	s - De	esignir	ng Win	ndowi	ng Sy	stems	- Use	r Supp	ort and	l On-L	ine		9
Information - Designing For Collaborative Work and Virtual Environments - 9													-	
Princip	Principles and User-Centred Design - Methods for User-Centred Design Unit 3 IMPLEMENTATION AND EVALUATION PROCESS													
Unit 3	Unit 3 IMPLEMENTATION AND EVALUATION PROCESS													
Implei	nental	10n 1s	sues –	Impl	ement	ation S	Suppo	ort - Ev	valuatio	on tecl	nniques	s –		9
Universal Design – User Support														
Unit 4 MODELS														
Cogni	ive m	odels	- Con	nmuni				oratio	n mode	els: Mo	odels o	t the		9
system	1 - M(of the	Syster	n - M	odelli	ng Ric	in Inte	raction	1				
Unit 5	APP	LICA	onigg		datak	abold	or rog	uirom	onta I	Ibiani	toneC	omputi	na	
Contor	- 01 ga	unzan voro I	UII ISS Isor Ir	ues al		vport	er req	ultim	ents - t	d tha V	lous C Norld V	Wide W	ng - Voh	9
Conte	<u>(</u> – a)			nerrae	05 - 11	yperu	JAL, 111	unn		une			45 DE	
COLU			<u></u>	a		1 0 1					<u> </u>	JIAL:	45 PE.	KIODS
COUL	RSE C	DUTC	OME	S: At	the end	d of th	e cour	se, the	e studei	nt will	be able	e to		
<u>COI :</u>	Devel	lop go	od de	sign fo	or hun	han ma	achine	e inter	action	system	1			
CO2:	Desig	n new	¹ intera	action	mode	l to sa	itisty a	all typ	es of c	ustom	ers			
<u>CO3</u> :	$\frac{\text{Evalu}}{\text{T}}$	ate th	e usab	ollity a	nd eff	ective	ness c	of vari	ous pro	oducts				
CO4 :	Tokn	low ho	$\frac{1}{2}$ by to a	apply	intera	ction t	echni	ques f	or syst	ems				
COP		PPIN	G	DO4	DOS	DOC	D07	DOQ	DOO	DO10	DO11	DO12	DCO1	DGOO
CO1	-	2	-	P04	-	-	-	-	-	-	-	-	1	-
CO2	2	2	-	2	-	-	-	-	-	2	-	-	-	-
CO3	-	-	2	3	-	-	-	-	-	-	I	-	-	-
CO4	2	-	-	2	2	-	-	-	-	-	-	-	-	-
CO5	DENI			•										
	KEN 1	CE BO	JOKS):			1 1	D	.11 D	1. 611		a	4	
1. A	1. Alan Dix, Janet Finlay, Gregory D.Abowd, Russell Beale, "Human Computer													
2 I Preece V Rogers H Sharn D Benyon S Holland and T Carey "Human														
$\begin{bmatrix} \angle . & J. \\ & C \end{bmatrix}$		C, I.I	araati	ъ, п. з ¬n" ∧	ddiae	D. D	aryon, dov 1	, э. п(001	manu a	anu I.	Carey.	. num	a11 –	
	hn M	Carro		JII , A	Comm	uter Ir	nteraci	774 tion in	the N	ew Mi	lleniur	n" Doo	reon	
J. J.	5. John M.Carloi, Human Computer Interaction in the New Minemum, Pearson Education 2002													
	Jucail	011, 2U	102											

PROGRAMME ELECTIVE -III [SEM-II]

			IT620	5207 :	Advar	nced C	Compu	ter Gi	raphics	s and A	Animati	ons		
Cours	e Cat	egory	: Prog	gramr	ne	C		T			L	Т	Р	С
Electiv	ve	0.				C	ourse	1 ype	e: I neo	ory	3	0	0	3
COU	RSE O)BJE(CTIVI	ES:										
• To	learn	the ou	itput p	orimiti	ives li	ke line	e, circ	le and	ellipse	e using	g algori	thms.		
• To	study	the 2	-D tra	nsforr	nation	s and	clippi	ng.	•					
• To	explo	ore 3-I) obje	ct rep	resent	ations	and tr	ansfo	rmatio	ons.				
• To	explo	ore gra	phics	progr	ammiı	ng usi	ng Op	enGL						
• To	enabl	le the	studer	its to i	unders	tand v	arious	s 3-D	model	ing an	d anim	ation to	ols	
Unit 1	INT	RODI	UCTI	ON										
Applic	cations	s of (Comp	uter (Graphi	cs -	Overv	view o	of Gra	aphics	System	ns - I	nput	
Device	es - O	utput	Primi	tives:	Point	s and	Lines	- Lin	e Drav	wing A	Algorith	nms - N	Mid-	0
Point (Circle	and E	Ellipse	Algo	rithms	s - Att	ribute	s of C	Output	Primit	ives: L	ine, Cu	irve,	9
Color,	Area-	-Fill, C	Charac	eter, B	undle	d Attri	ibutes	- Ant	ialiasir	ng				
Unit 2	TWC	D-DIN	IENS	IONA	L CO	NCEF	PTS							
Two-I	Dimen	sional	Geon	netric	Trans	forma	tions	- Two	-Dime	ensiona	ıl View	ving - T	wo-	
Dimer	nsional	l Poir	nt – C	Cohen	Suth	erland	l Line	e Clip	ping -	- Suth	erland-	Hodge	man	9
Polygo	on Cli	pping	- We	iler-A	therto	n Pol	ygon	Clippi	ing - 7	Fext C	lipping	g - Exte	erior	,
Clippi	ng													
Unit 3	D THR	EE-D	IMEN	ISION	AL C		EPTS		• •	011				
Three-	-Dime	nsiona	al Disj	play N	/lethoo	1s - T	hree-L	Jimen	sional	Objec	t Repre	esentati	ons:	
Polygo	n - Q	uadric	c Suria	aces –	Splin	es - E	Sezier	curve	s and a	surface	es - Oc	tree –	BSP	9
trees –	- Visu		on or		sets. I	nree-l	Dimen	isiona	I I ran	SIOrma	itions:	I ransia	tion	
- Kola	$\Box OII - \Box OII$		ווט – ע ער אי	CP /	NAVAT	NG W	п <u>g</u> - С лтц (ODEN		alision	mation			
Drawi	$n\sigma 3\Gamma$		$\frac{1}{1}$	Perfo	orm T	ransfe	rmati			rs And	1 I ioh	t - Ad	ding	
Textur	re and	Shad	ows -	Usin	σ Sha	ding 1	Model	s Un	derstar	nding	3D Mc	ndeling	and	9
Anima	ation T	Tools l	ike 3I) Stud	lio Ma	x. Ma	va. Bl	lender		liung		aening	und	,
Unit 5	Anin	nation					<u> </u>							
Multir	nedia	I/O 7	Fechn	ologie	es – I	Digital	Void	e and	d Aud	io - '	Video	Image	and	
Anima	ation -	- Full	Moti	on Vi	deo-S	torage	e and	Retrie	eval T	echnol	logies-	Anima	tion	0
Princip	ples -	Anim	ation	Draw	ing - J	Anima	ation I	Marke	ting a	nd Ma	nagem	ent - M	latte	9
Painti	ng				•				-		•			
											TC)TAL:	45 PEI	RIODS
COUF	RSE O	UTC	OME	S: At	the end	l of th	e cour	se the	e stude	nt will	be able	e to		
CO1 :	Devel	lop the	e line.	circle	and e	llipse	drawi	ng alg	orithn		00 4010			
CO2 :	Apply	$\frac{1}{2}$ the t	wo dii	nensi	onal g	eomet	ric tra	nsfort	nation	s and 2	2-D cli	pping		
CO3 :	Repre	esent 2	-D ob	jects a	and do	geon	netric	transf	ormati	ons				
CO4 :	Perfo	rm cli	pping	and D	Detecti	ng the	visib	le surf	faces in	n 3-D (objects			
CO5 :	Apply	/ trans	forma	tion, t	texture	e, shac	low ar	nd sha	ding in	n 3-D (objects	using (OpenGl	L and
Anima	ation			,					U		5	U	1	
CO P	O MA	PPIN	G											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	-	-	-	-	-	-	-	-	-	-	-	1	-
CO2	-	2	-	-	-	-	-	-	-	$\frac{2}{2}$	-	-	-	-
CO3	-	-	-	2	-	-	-	-	-	-	-	-	-	_
CO5	-	-	2	-	-	-	-	-	-	-	-	2	-	-

- 1. Donald Hearn and M. Pauline Baker, "Computer Graphics C Version", Second Edition, Pearson Education, 2012
- 2. James D. Foley, Andries Van Dam, Steven K. Feiner, John F. Hughes, "Computer Graphics Principles and Practice", Second Edition, Pearson Education 2007
- 3. F. S. Hill, "Computer Graphics using OpenGL", Second edition, Pearson Education 2003

CS624211: Softwa	are Quality Assurance an	d Testi	ing		
Course Category: Programme	Course Turner Theorem	L	Т	Р	С
Elective	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:					
• To understand the basics of testing	, test planning &design and	l test te	am orga	anizatio	on
• To study the various types of test i	n the life cycle of the softw	are pro	duct.		
• To build design concepts for system	n testing and execution				
• To learn the software quality assur	ance ,metrics, defect preven	ntion te	chnique	es	
• To learn the techniques for quality	assurance and applying for	applic	ations		
Unit 1 SOFTWARE TESTING - CO	DNCEPTS, ISSUES, AND	TECI	HNIQU	ES	
Quality Revolution, Verification and	Validation, Failure, Error,	Fault,	and De	fect,	
Objectives of Testing, Testing Activiti	es, Test Case Selection Wh	ite-Bo	x and B	lack	
,test Planning and design, Test Tools	and Automation, Power of	of Test	. Test T	eam	9
Organization and Management-Test	Groups, Software Quality	Assur	ance G	roup	
,System Test Team Hierarchy, Team E	suilding				
Unit 2 SYSTEM TESTING	Tashniquas Ingramontal 7	Ton De	Dum Do	tom	
Up Sandwich and Big Bang, Software	and Hardware Integration	Up Do Hardy	vare De	sign	
Verification Tests Hardware and So	oftware Compatibility Mat	trix Te	vare De st Plan	for	
System Integration Builtin Testing	functional testing - Testi	ing a	Function	n in	9
Context. Boundary Value Analysis. D	ecision Tables. acceptance	testing	r - Selec	tion	,
of Acceptance Criteria, Acceptance	Test Plan, Test Execution	on Tes	st. softv	vare	
reliability - Fault and Failure, Factors	Influencing Software, Relia	bility I	Models		
Unit 3 SYSTEM TEST CATEGOR	IES			I	
System test categories Taxonomy of	System Tests, Interface 7	Tests F	unction	ality	
Tests. GUI Tests, Security Tests Feat	ure Tests, Robustness Tests	s, Boui	ndary V	alue	
Tests Power Cycling Tests Interoperation	ability Tests, Scalability T	ests, S	tress T	ests,	
Load and Stability Tests, Reliability T	ests, Regression Tests, Reg	ulatory	Tests.	Test	
Generation from FSM models- St	ate-Oriented Model. Fin	ite-Stat	te Mac	hine	0
Transition Tour Method, Testing with	State Verification. Test A	rchitec	tures-Lo	ocal,	9
alstributed, Coordinated, Remote.	system test design- res		ign Fac	aian	
Preparedness Metrics Test Case D	esign Effectiveness syste	tess I m test		sign	
Modeling Defects Metrics for Monito	oring Test Execution Defe	ct Ren	orts De	efect	
Causal Analysis. Beta testing, measuri	ng Test Effectiveness	et nep	0110, 20		
Unit 4 SOFTWARE QUALITY	-8				
Software quality - People's Quality	Expectations, Frameworl	cs and	ISO-9	126,	
McCall's Quality Factors and Criter	ia – Relationship. Quality	Metr	ics. Qu	ality	0
Characteristics ISO 9000:2000 Softw	are Quality Standard. Mat	urity n	nodels-	Test	9
Process Improvement, Testing Maturity	y Model				
Unit 5 SOFTWARE QUALITY ASS	SURANCE				
Quality Assurance - Root Cause Ana	lysis, modeling, technolog	jies, sta	andards	and	
methodologies for defect prevention.	Fault Tolerance and Fail	ire Co	ntainme	ent -	
Safety Assurance and Damage Control	l, Hazard analysis using fau	ilt-tree	s and ev	vent-	9
trees. Comparing Quality Assurance T	echniques and Activities. Q	A Mo	nitoring	and	
Neasurement, Kisk Identification for	r Quantinable Quality Ir	nprove	ment. (ase	
Sudy. FSWI-Dased Testing of web-Ba	ised Applications				

TOTAL: 45 PERIODS

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1 : Perform functional and non-functional tests in the life cycle of the software product

CO2 : Understand system testing and test execution process

CO3 : Identify defect prevention techniques and software quality assurance metrics

CO4 : Apply techniques of quality assurance for typical applications

CO5 : Analyze the Quality of Software

CO PO MAPPING

			-												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	-	2	-	1	-	-	-	-	-	-	-	-	-	
CO2	3	2	-	-	-	-	-	-	-	3	-	-	-	-	
CO3	-	-	3	2	-	-	-	-	-	-	-	-	-	-	
CO4	-	-	-	2	2	-	-	-	-	-	-	-	-	-	
CO5															

REFERENCE BOOKS:

1. Software Testing And Quality Assurance-Theory and Practice, Kshirasagar Nak Priyadarshi Tripathy, John Wiley & Sons Inc,2008

2. Software Quality Engineering: Testing, Quality Assurance, and Quantifiable Improvement, Jeff Tian, John Wiley & Sons, Inc., Hoboken, New Jersey. 2005

3. Software Quality Assurance - From Theory to Implementation, Daniel Galin, Pearson Education Ltd UK, 2004

4. Software Quality Assurance, MilindLimaye, TMH ,New Delhi, 2011

CS62421	2 – Cognitive Computing	5			
Course Category: Programme		L	Т	Р	С
Elective	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:		L	1		
• To appreciate the need of Cognitiv	e Computing Techniques.				
• To learn different types of sets whi	ch can handle imprecise da	ata valu	es		
• To develop systems which have lea	arning canabilities				
 To learn techniques to optimize the 	e results and find the optim	a			
Unit 1 Psychology and Neuroscience	results and find the optim	u			
Philosophy: Mental-physical Relation	n – From Materialism to	Mental	Scien	ce –	
Detour before the naturalistic turn –	The Philosophy of Scien	ce – T	he Min	d in	
Cognitive Science $-$ Logic and the S	ciences of the Mind – Ps	vcholog	$\mathbf{v} \cdot \mathbf{P}$	e of	
Psychology within Cognitive Scien	ce -Science of Informat	tion Pr	ocessin	$\sigma =$	9
Neurosciences: Cognitive Neuroscier	nce – Perception -Decisio	on – Le	earning	and	
Memory – Language Understanding at	nd Processing		sur ming	una	
Unit 2 Probabilistic Programming Lar					
Web PPL Language – Syntax –	Using Javascript Librarie	es - N	Ianipula	ating	
probability types and distributions	– Finding Inference –	Explori	ng ran	dom	_
computation – Coroutines: Functions	s that receive continuation	ns -Enu	meratio	on –	9
Other basic computation					
Unit 3 Fuzzy sets and fuzzy logic					
Introduction to fuzzy logic classica	l and fuzzy sets overvi	ew of	fuzzy	sets	
membership function fuzzy rule gene	ration operations on fuzzy	vsets c	romplin	ent	
intersection union combinations of	operations aggregation	operat	ion Fi	177V	9
Extension Principles Defuzzification	Fuzzy Rule bases Deve	Plonmer	nt of Fi	177V	,
Logic based Expert Systems CASE S	rudies	nopinei	n or r	ally	
Light 4 Neural Networks & Rough Sets					
Overview of biological neurons Mat	, hematical model of Neuro	on Per	rentron	and	
Multi Laver Perceptron Learning i	n Artificial Neural Netv	vorks	Supervi	ised	
Unsupervised and Competitive Learning	ng paradigms: Learning r	iles and	l Functi	ons	
Back propagation algorithm Rough	Sets Upper and Lowe	r Annr	oximati	ons	Q
Boundary Region Decision Tables ar	d Decision Algorithms P	ropertie	on and Ro	ungh	,
Sets Rough Membership Reducts	Discernibility Matrix	and D ²	iscernik	ility	
Functions Generation of Inference Ru	les			inty	
Unit 5 Evolutionary Algorithms and H	Typrid Algorithms				
Introduction Evolutionary algorithms	- Genetic Algorithm: His	story to	erminol	οσv	
biological background creation of	offspring working prin	ncinles	of get	netic	
algorithms fitness function Roulette	wheel selection Boltzma	nn sele	ction c	ross	
over mutation inversion deletion	and duplication generation	nn cycl	e Su	varm	9
Optimization –Part Swarm Optimization	on and Ant Colony Optimi	zation	Differe	ntial	
Evolutionary Algorithm	on and this colony optim	Zution	2111010	intitui	
		Т	отат.	45 PF	RIODS
COURSE OUTCOMES. At the and a	f the course the student wil	l ha ahl	e to	тэт	
CO1 · Understand the Dhilosophy of S	r une course, une suudin Wil				
CO1. Older static the Fillosophy OI S	annly Computing tooknigu	as for "	and more	ld prol	blom
solving	appry Computing techniqu	ies 101 f	car wor	ia prot	
	·	1 1			

CO3 : Able to represent the imprecise information using sets and develop inference systems based on these

CO4 : Develop learning systems

CO5 : Learn and practice various optimization algorithms for real world problems solving CO PO MAPPING

	0 1.111		-											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2											
CO2	2	2								3				
CO3	3		2											
CO4	2			3										
CO5					3									

REFERENCE BOOKS:

1. Robert A. Wilson, Frank C. Keil, "The MIT Encyclopedia of the Cognitive Sciences", The MIT Press, 1999

2. Noah D. Goodman, Andreas Stuhlmuller, "The Design and Implementation of Probabilistic Programming Languages", Electronic version of book, https://dippl.org/

3. Noah D. Goodman, Joshua B. Tenenbaum, The ProbMods Contributors, "Probabilistic Models of Cognition", Second Edition, 2016, https://probmods.org

CS624213: SO	CIAL NETWORK ANA	LYSIS			
Course Category: Programme	Course True Theory	L	Т	Р	С
Elective	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:					
• Gain knowledge about the current	Web development and eme	ergence	of Soci	al Web)
• Study about the modeling, aggrega	ting	-			
• Learn knowledge representation of	Semantic Web				
• Learn about the extraction and min	ing tools for Social netwo	rks			
• Gain knowledge on Web personali	zation and Web Visualizat	ion of S	ocial ne	etwork	s
Unit 1INTRODUCTION TO SOCIAL	. NETWORK ANALYSIS				
Introduction to Web - Limitations of c	urrent Web – Developmer	nt of Ser	nantic '	Web	
- Emergence of the Social Web -	Network analysis - Deve	lopmen	t of So	ocial	
Network Analysis - Key concepts an	d measures in network an	alysis -	- Electr	onic	9
sources for network analysis - Electr	onic discussion networks	, Blogs	and or	line	
communities					
Unit 2 MODELLING, AGGREGATI	NG AND KNOWLEDGE	REPRE	SENTA	ATION	
Ontology and their role in the Ser	mantic Web - Ontology	-based	Knowle	edge	
Representation - Ontology languages	for the Semantic Web –	RDF a	and OW	/L -	0
Ontological representation of social	individuals, Ontological	repres	entation	1 01	9
social relationships, Aggregating and r	easoning with social netwo	ork data	, Advai	ncea	
Unit 3 EXTRACTION AND MINING	COMMUNITITES IN W			IETWO	DVS
Extracting evolution of Web Commun	ity from a Sorial of Wah	ED SU Arobiyo	Doto:	ting	JKKS
Communities in Social Networks	- Definition of Commu	nity -	- Delet	ning	
Communities - Methods for Commu	nity Detection & Mining	- Ann	lication	s of	9
Community Mining Algorithms - Tool	ls for Detecting Communit	ies Soc	ial Netv	vork	,
Infrastructures and Communities					
Unit 4 PREDICTING HUMAN BEHA	AVIOR AND PRIVACY I	SSUES			
Understanding and Predicting Humar	Behaviour for Social Co	ommun	ities - 1	User	
Data Management, Inference and Dist	ribution - Enabling New H	Iuman l	Experie	nces	
- Reality Mining - Context-Awareness	s - Privacy in Online Socia	al Netw	orks - T	rust	9
in Online Environment - Trust Models	s Based on Subjective Log	gic - Tru	ist Netv	vork	
Analysis - Combining Trust and Reput	tation				
Unit 5 VISUALIZATION AND APPI	LICATIONS OF SOCIAL	NETW	ORKS		
Graph Theory- Centrality- Clust	ering - Node-Edge I	Diagran	ns, Ma	atrix	
representation, Visualizing Online So	cial Networks, Visualizin	g Socia	l Netw	orks	
with Matrix-Based Representations-	Matrix + Node-Link	Diagrai	ns, Hy	brid	9
Representations - Applications - C	Covert Networks - Com	munity	Welfa	re -	
Collaboration Networks - CoCitation F	Networks				
		Т	JTAL:	45 PE	RIODS
COURSE OUTCOMES: At the end o	f the course, the student wil	l be abl	e to		
CO1 : Apply knowledge for current W	eb development in the era	of Socia	al Web		
CO2 : Model, aggregate and represent	knowledge for Semantic V	Veb			
CO3 : Design extraction and mining to	ools for Social networks				
CO4 : Develop personalized web sites	and visualization for Socia	al netwo	orks		
CO5 : Design Web personalization and	d Visualization for Social r	network	S		

CO PO MAPPING
COPO MAPPING

		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CC	D1	3					3								
CC	02					2					2				
CC	03	3	3	2											
CC	04		2	2											
CC)5			2											
RE	FEI	REN	CE BO	OOKS	5:										
1.	Peter Mika, —Social Networks and the Semantic Webl, First Edition, Springer 2007														
2.	2. BorkoFurht, —Handbook of Social Network Technologies and Applications ^{II} , 1st Edition,														

Springer, 2010

3. Peter Mika, —Social networks and the Semantic Webl, Springer, 1st edition 2007

 Dion Goh and Schubert Foo, —Social information Retrieval Systems: Emerging Technologies and Applications for Searching the Web Effectively, IGI Global Snippet, 2008

CS624215	: Block Chain Technologie	s											
Course Category: ProgrammeCourse Type: TheoryLTP													
Elective	Course Type: Theory	3	0	0	3								
COURSE OBJECTIVES:		_		-									
• To learn the various cryptography	primitives used in block cha	ain.											
• To study the design principles of b	lock chain.												
 To understand the various consensi 	us algorithms												
 To study the block chain in networ 	king												
 To learn the enhancements of block 	k chain technologies												
Unit 1 CRYPTOGRAPHY IN BLOC	KCHAIN												
Blockchain Definitions – Blockchain	versus Databases – Histor	$\mathbf{r}\mathbf{v} = \mathbf{N}$	Iotivati	n _									
Characteristics – Types – Overview –	Hashing in Blockchain –	Linkin	o block	s in									
blockchain – Linking blocks using	SHA256 – Block structu	ure –	Blocke	hain	9								
functionality – Creating Blockchain -	- Byzantine failure problem	n in h	lockcha	in _	,								
Digital signatures in blockchain – Block	ckchain wallets	in in o	oenena										
Unit 2 BLOCKCHAIN DESIGN PRI	NCIPLES												
Networked Integrity – Distributed Pow	ver- Value as Incentive – Se	ecurity	– Priva	cv –									
Rights Preserved – Inclusion – Centra	lized Registries versus Dis	tribute	d Ledge	ers –									
Public versus Private Ledgers – Transi	parency as a Strategic Risk	– Tran	sparenc	v as	9								
a Strategic Asset - Zero Knowledge Pr	poofs		sparone	j us									
Unit 3 CONSENSUS ALGORITHMS	<u>}</u>												
Proof of Work – Pure Stake Based C	onsensus – Proof of Stake	- Leas	ed Proc	of of									
Stake – Delegated Proof of Stake –	Hybrid Form of PoS and	PoW	– Prac	tical									
Byzantine Fault Tolerance – Ripple –	Tendermint – Proof of Ela	osed T	me – P	roof	9								
of Activity – Proof of Burn – Hyperled	lger Fabric												
Unit 4 NETWORKING IN BLOCK C	CHAIN												
Peer – to –peer Networking – Netw	vork Discovery – Block	Synchr	onizatio	on –									
Building a simple Blockchain in P2P	Network – Validating new	Block	– Selec	ting									
Longest chain – Block Exchange betw	een Peers – Application Int	erfaces	Blockc	hain	9								
Networks – Testnet – Regtest – H	Blockchain in 5G – Bloc	ckchair	in So	ocial									
Networking – Blockchain for IoT													
Unit 5 BLOCKCHAIN OPTIMIZATI	ONS AND ENHANCEME	ENTS		·									
Blockchain Optimizations - Transac	tion Exchange – Off-cha	in Tra	nsaction	ns –									
Block size improvements – Blockcha	in enhancements - Shardi	ng – E	volutio	n of									
consensus algorithm - Proof of Sta	ke - Proof of Activity -	- Byza	ntine F	Fault	0								
Tolerance Consensus Models - Proof	f of Elapsed Time - Cross	s-chain	Protoc	ol –	9								
Privacy Enhancement – Blockchain	Security – Transaction S	Securit	y Mod	el –									
Decentralized Security Model - Attack	ks on Blockchain												
		Т	OTAL:	45 PE	RIODS								
COURSE OUTCOMES: At the end o	f the course, the student will	be abl	e to										
CO1 : Implement the required cryptog	raphy primitives for block of	chain s	ystems										
CO2 : Work with various block chain of	design principles												
CO3 : Implement with various consense	sus algorithms												
CO4 : Equip networks with the various	s block chain techniques												

CO5 : Work with block chain optimization techniques

CO P	O MA	PPIN	G											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		2											
CO2	2	2								3				
CO3	3		2											
CO4	CO4 2 3													
CO5	CO5 2 3 </td													
REFE	REFERENCE BOOKS:													
1. Ko	1. Koshik Raj, "Foundations of Blockchain", Packt Publishers, 2019													
2. S.	Shukl	a, M. 1	Dhaw	an, S.	Sharn	na and	l S. V	enkate	san, "	Blocke	hain T	echnol	ogy:	
Cr	yptoci	urrenc	y and	Appli	cation	s", Oz	xford	Unive	rsity F	Press, 2	019			
3. Jo	sh Tho	ompso	n, "Bl	ockch	ain: T	he Bl	ockch	ain fo	r Begi	nnings	, Guild	to Blo	ckchair	1
Te	chnol	ogy ar	nd Blo	ckcha	in Pro	gram	ning"	, Crea	te Spa	ce Inde	epender	nt Publ	ishing	
Pla	Platform, 2017													
4. Ar	4. Andreas M. Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies",													
Or	Oreilly Media, 1st Edition, 2014													

PROGRAMME ELECTIVE -IV

IT626208 -	PATTERN RECOGNITIO	ON			
Course Category: Programme	Course Trines Theory	L	Т	Р	С
Elective	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:					
• To know the fundamental	algorithms for pattern recog	nition			
• To understand the overview	w of pattern recognition				
• To know the major approa	ches in statistical pattern rec	cognitio	n.		
• To know the major approa	ches in syntactic pattern rec	ognitio	1.		
To know several unsupervision	ised learning and clustering	algorith	nms		
UNIT 1: BASICS OF PROBABILI ALGEBRA	TY, RANDOM PROCESS	SES AN	D LIN	EAR	9
Probability: independence of events	s, conditional and joint pr	robabili	ty, Bay	yes' th	eorem;
Random Processes: Stationary and	nonstationary processes, E	xpectat	ion, Aı	itocorr	elation,
Cross-Correlation, spectra; Linear A	Algebra: Inner product, ou	ter prod	luct, in	verses	, eigen
values, eigen vectors; Bayes Decision	Theory				
UNIT 2: PATTERN RECOGNITIO	N OVERVIEW				9
Typical Pattern Recognition System,	Patterns and Features Extra	ction, T	raining	and Le	earning
in Pattern Recognition system, Di	fferent types of Pattern	Recogn	ition A	Approa	ches –
Statistical, Syntactic, Neural. Discrim	inant functions.				0
UNIT 3: STATISTICAL PATTER	N RECOGNITION	libood	actimat	ion D	<u>9</u>
Parametric estimation and supervise	a learning, Maximum like	iinood	estimat N octim	ion, Ba	iyesian
LINIT 4. SVNTACTIC DATTEDN	PECOCNITION)W, K-IN	in estifi	lation.	0
Grammar Based Approaches Eleme	nts of Formal Grammars	Parsing	Conce	nts _	9 Parsing
Algorithm Transition Networks in	Parsing Higher Dimensi	onal G	ramma	rs. Sto	chastic
Grammars, Graphical Approaches – G	Graph Isomorphism. Attribu	ted Gra	phs	,	enastre
UNIT 5: UNSUPERVISED LEARN	ING AND CLUSTERING				9
Mixture Models and EM - K-Mea	ns Clustering – Dirichlet	Process	s Mixtu	are Mo	odels –
Spectral Clustering – Hierarchica	l Clustering – The Cu	irse of	Dime	ensiona	lity –
Dimensionality Reduction –Principal	Component Analysis - Lat	ent Var	iable N	Iodels	(LVM)
– Latent Dirichlet Allocation (LDA).					
		T	DTAL:	45 PE	RIODS
COURSE OUTCOMES: At the end of	of the course, the student wil	l be able	e to		
CO1: Acquire the knowledge of funda	amental algorithms related t	o patter	n recog	nition	
CO2: Learn the pattern recognition ap	oproaches				
CO3: Apply the major approaches in	statistical pattern recognitio	n.			
CO4: Apply the major approaches in	syntactic pattern recognition	1. 	• 1	1 0	
cos: Discusses several unsupervised	l learning and clustering alg	gorithm	s suitat	ble for	pattern
classification					

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2							2		3	2	
CO2	2	2	2							2		3	3	
CO3	2	2	2							2		2		3
CO4	2	2	2							2		2		3
CO5	2	3	2							2		2		2

1-low, 2 - medium, 3 - high, '-' no correlation

REFERENCE BOOKS:

1. Stephen Marsland, "Machine Learning: An Algorithmic Perspective", CRC Press, 2011.

2.Richard O. Duda, Peter E. Hart, David G. Stork, "Pattern Classification", Second Edition., Wiley India, 2006.

3.Christopher M. Bishop, "Pattern Recognition and Machine Learning", Springer (India) Private Limited, 2013.

4.Ian H. Witten, Eibe Frank, "Data Mining: Practical Machine Learning Tools and Techniques", Second Edition, Elsevier India, 2011.

5.SergiosTheodoridis, KonstantinosKoutroumbas, "Pattern Recognition", Fourth Edition., China Machine Press, 2009

6. William Gibson," Pattern Recognition ",Penguin, 2011

WEB RESOURCES:

1. https://www.v7labs.com/blog/pattern-recognition-guide

2. https://www.simplilearn.com/pattern-recognition-and-ml-article

IT626209 - PARALLEL COMPUTING														
Course Category: Programme	C	Course Tunes Theory			L	Т	Р	С						
Elective	Course	I ype	: 1 neo	ry	3	0	0	3						
COURSE OBJECTIVES:	COURSE OBJECTIVES:													
• To study the scalability and clustering issues and the technology necessary for them.														
• To understand the technologies enabling narallel computing														
 To study the different types of interconnection networks 														
 To study the different parallel programming models 														
 To study the university programming models. To study the software support needed for shared memory programming. 														
• To study the software support needed for shared memory programming.														
UNIT 1. SCALABILITY AND CLUSTERING 9														
Evolution of Computer Architecture –	Dimensio	ons of	Scalab	ilitv –	Paralle	l Comr	uter M	odels –						
Basic Concepts of Clustering – Scalab	ole Design	Princ	iples –	Parall	el Prog	rammir	19 Over	rview –						
Processes. Tasks and Threads – Par	rallelism	Issues	– Inte	raction	/ Con	munic	ation Is	ssues –						
Semantic Issues In Parallel Programs.														
UNIT 2: ENABLING TECHNOLO	GIES							9						
System Development Trends – Princi	iples of P	rocess	or Des	ign – I	Microp	rocesso	r Arch	itecture						
Families – Hierarchical Memory Tecl	hnology –	Cach	e Cohe	erence	Protoco	ols – Sl	hared N	/lemory						
Consistency – Distributed Cache Me	emory Are	chitect	ure –	Latenc	y Tol	erance	Techni	ques –						
Multithreaded Latency Hiding.	5				5			1						
UNIT 3: SYSTEM INTERCONNE	ECTS							9						
Basics of Interconnection Networks -	Network '	Fopolo	ogies ar	nd Prop	oerties -	- Buses	, Cross	bar and						
Multistage Switches, Software Multith	reading –	Synch	nroniza	tion M	echanis	sms.								
UNIT 4: PARALLEL PROGRAM	MING	•						9						
Paradigms and Programmability -	- Parallel	Prog	grammi	ing M	[odels	– Sha	ared N	/lemory						
Programming.				U				•						
UNIT 5: MESSAGE PASSING PRO	OGRAM	MING	r					9						
Message Passing Paradigm – Message	Passing I	nterfac	ce – Pa	rallel V	/irtual]	Machin	e.							
					TC)TAL:	45 PE	RIODS						
COURSE OUTCOMES: At the end	of the cou	rse, th	e stude	nt will	be able	e to								
CO1: Know the scalability and clustering issues and the technology necessary for them.														
CO2: Build the technologies enabling parallel computing.														
CO3: Build the different types of interest	connection	n netw	orks.											
CO4: Design the different parallel programming models.														
CO5: Develop the software support needed for shared memory programming.														
CO-PO MAPPING														
PO1 PO2 PO3 PO4 PO5 F	PO6 PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2						
CO1 3 2 2						3	2							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						3	3	2						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						2		3						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						2		2						
			' no co	orrelat	ion	-		-						
1- low 2 - mediu	um 3 - hi	ισn '-'		REFERENCE BOOKS:										
1- low, 2 - media	um, 3 - h	ign, '-'		JIICIU										
1- low, 2 - media REFERENCE BOOKS: 1 Kai Hwang and Zhi WeiXu "Sca	um, 3 - hi	rallel	Comp	uting"	Tata	McGi	raw-Hi	ll New						
1- low, 2 - media REFERENCE BOOKS: 1.Kai Hwang and Zhi.WeiXu, "Sca Delhi 2016	um, 3 - hi ilable Pa	rallel	Comp	outing"	, Tata	McGı	raw-Hi	ll, New						
1- low, 2 - media REFERENCE BOOKS: 1.Kai Hwang and Zhi.WeiXu, "Sca Delhi, 2016. 2.David E. Culler & Jaswinder	um, 3 - hi ilable Pa Pal Sin	rallel	Comp	outing",	, Tata	McGi g Arc	raw-Hi	ll, New						
1- low, 2 - media REFERENCE BOOKS: 1.Kai Hwang and Zhi.WeiXu, "Sca Delhi, 2016. 2.David E. Culler &Jaswinder Hardware/Software Approach" More	um, 3 - hi ilable Pa Pal Sing zan Kaufr	rallel gh, " nan Pi	Comp Paralle	outing"; el Co rs. 200	, Tata mputin 0.	McGi g Arc	raw-Hi chitectu	ll, New re: A						

Hill, New Delhi, 2005.

4.Anubhav Pradhan, Anil V Deshpande, "Mobile Apps Development", First Edition, Wiley India,2013

5. Joseph JaJa, "Introduction to Parallel Algorithms", Addison-Wesley, 2000.

6.Selim G. Akl, "The Design and Analysis of Parallel Algorithms", Prentice Hall, New Jercy, 2016

WEB RESOURCES:

1. https://www.ibm.com/topics/parallel-computing

2. https://appicontemplate.com/

IT626210 - MOBILE APPLICATION DEVELOPMENT																
Course Category: Programme	Course Type: Theory		L	Т	P	С										
Elective	Course Type:	Ineory	3	0	0	3										
COURSE OBJECTIVES:																
• To understand the need and characteristics of mobile applications																
• To design the right user interface for mobile application																
• To understand the design issues in the development of mobile applications.																
• To understand the development procedure for mobile application.																
• To develop mobile applications using various tools and platforms																
	6		1													
UNIT 1: INTRODUCTION																
Mobile Application Model – Infrastructure and Managing Resources – Mobile Device Profiles																
– Frameworks and Tools.																
UNIT 2: USER INTERFACE						9										
Generic UI Development - Multimo	dal and Multich	annel UI -	-Gesture	Based	1 UI –	Screen										
Elements and Layouts – Voice XML.																
UNIT 3: APPLICATION DESIGN						9										
Memory Management – Design Patte	erns for Limited	Memory –	Work	Flow fo	or App	lication										
development – Java API – Dynamic	Linking – Plugi	ns and rule	of thur	nb for	using I	DLLs –										
Concurrency and Resource Managem	nent.															
UNIT 4: MOBILE OS						9										
Mobile OS: Android, iOS – Android	Application Arc	hitecture –	Android	1 basic	compo	nents –										
Intents and Services – Storing and R	Retrieving data –	Packaging	and De	eploym	ent - S	ecurity										
and Hacking.						0										
Communication via the Web Noti	PIVIEN I	man Cran	higg on	J M.14	imadia	9										
Animation Event handling and Gran	higg corviges T	rilis – Graf	I ocotio	n basa		Communication via the Web – Notification and Alarms – Graphics and Multimedia: Layer										
Animation, Event handling and Graphics services – Telephony – Location based services																
TOTAL: 45 PERIODS																
COURSE OUTCOMES: At the end	of the course the	student wil	T(TAL:	45 PE	res RIODS										
COURSE OUTCOMES: At the end CO1: Know the features of the basi	of the course, the	estudent wil	T(1 be able	DTAL: to	45 PE	RIODS										
COURSE OUTCOMES: At the end of CO1: Know the features of the basic tools	of the course, the ics of mobile ap	student wil	TO TO I be able evelopm	DTAL: e to nent fra	45 PE	RIODS										
COURSE OUTCOMES: At the end CO1: Know the features of the basis tools CO2: Able to develop a UI for mobile	of the course, the les of mobile ap e application	student wil plication d	T(l be able evelopm	DTAL: to nent fra	45 PE	RIODS										
COURSE OUTCOMES: At the end of CO1: Know the features of the basi tools CO2: Able to develop a UI for mobile CO3: Design mobile applications that	of the course, the ics of mobile ap e application t manages memo	student wil plication d	T(l be able evelopn ally	DTAL: e to nent fra	45 PE	res RIODS										
COURSE OUTCOMES: At the end CO1: Know the features of the basi tools CO2: Able to develop a UI for mobile CO3: Design mobile applications that CO4: Build applications based on mo	of the course, the les of mobile ap e application t manages memo bbile OS like And	estudent wil plication d ry dynamic froid, iOs	T(1 be able evelopm ally	DTAL: e to nent fra	45 PE	res RIODS										
COURSE OUTCOMES: At the end CO1: Know the features of the basi tools CO2: Able to develop a UI for mobile CO3: Design mobile applications that CO4: Build applications based on mo CO5: Build location based services	of the course, the ics of mobile ap e application t manages memo bile OS like Anc	estudent wil plication d ory dynamic droid, iOs	T(l be able evelopn ally	DTAL: e to nent fra	45 PE	es RIODS										
COURSE OUTCOMES: At the end CO1: Know the features of the basi tools CO2: Able to develop a UI for mobile CO3: Design mobile applications that CO4: Build applications based on mo CO5: Build location based services CO-PO MAPPING	of the course, the les of mobile ap e application t manages memo bile OS like Anc	estudent wil plication d ry dynamic lroid, iOs	T(1 be able evelopm ally	DTAL: e to nent fra	45 PE	res RIODS rks and										
COURSE OUTCOMES: At the end CO1: Know the features of the basi tools CO2: Able to develop a UI for mobile CO3: Design mobile applications that CO4: Build applications based on mobile CO5: Build location based services CO-PO MAPPING PO1 PO2 PO3 PO4 PO5 F	of the course, the ics of mobile ap e application t manages memo bile OS like And	estudent wil plication d ory dynamic broid, iOs	T(1 be able evelopm ally PO11	PO12	45 PEI	res RIODS rks and PSO2										
COURSE OUTCOMES: At the endCO1: Know the features of the basitoolsCO2: Able to develop a UI for mobileCO2: Able to develop a UI for mobileCO3: Design mobile applications thatCO3: Design mobile applications thatCO4: Build applications based on moCO5: Build location based servicesCO-PO MAPPINGPO1PO2PO3PO4PO5FCO13220F	of the course, the ics of mobile ap e application t manages memo bbile OS like And PO6 PO7 PO8	estudent wil plication d ry dynamic lroid, iOs PO9 PO10 2 2	T(l be able evelopm ally PO11 2	PO12	PSO1	PSO2										
COURSE OUTCOMES: At the end CO1: Know the features of the basi tools CO2: Able to develop a UI for mobile CO3: Design mobile applications that CO4: Build applications based on mode CO5: Build location based services CO-PO MAPPING PO1 PO2 PO3 PO4 PO5 F CO1 3 2 2 1 1 CO2 2 2 2 1 1	of the course, the ics of mobile ap e application t manages memo bile OS like And PO6 PO7 PO8	estudent wil plication d ry dynamic hroid, iOs	Point PO11 2 2	PO12 3 3	PSO1 2 3	PSO2										
COURSE OUTCOMES: At the end of CO1: Know the features of the basi tools CO2: Able to develop a UI for mobile CO2: Able to develop a UI for mobile CO2: Able to develop a UI for mobile CO3: Design mobile applications that CO4: Build applications based on mo CO5: Build location based services CO-PO MAPPING PO1 PO2 PO3 PO4 PO5 F CO1 3 2 2 4 4 CO2 2 2 2 4 4 CO3 2 2 4 4 4 4 4 CO2 2 2 4	of the course, the ics of mobile ap e application t manages memo bile OS like Anc PO6 PO7 PO8	e student wil plication d ory dynamic lroid, iOs PO9 PO10 2 2 2 3 3 2 2 2	Point POint 2	PO12 3 2 2	PSO1 2 3	PSO2										
COURSE OUTCOMES: At the end CO1: Know the features of the basi tools CO2: Able to develop a UI for mobile CO3: Design mobile applications that CO4: Build location based on mo CO5: Build location based services CO-PO MAPPING PO1 PO2 PO3 PO4 PO5 F CO1 3 2 2 2 2 2 CO2 2	of the course, the les of mobile ap e application t manages memo bile OS like And PO6 PO7 PO8	estudent willplication dpry dynamicroid, iOsPO9PO1022233223223223	Point PO11 2 2 2 3	PO12 3 2 2 2	PSO1 2 3	PSO2 3 2										
COURSE OUTCOMES: At the endCO1: Know the features of the basi toolsCO2: Able to develop a UI for mobile applications that CO3: Design mobile applications that CO4: Build applications based on moCO4: Build applications based on moCO5: Build location based servicesPO1PO2PO3PO1PO2PO3PO4PO1322CO2222CO3222CO4222CO5232Low, 2 - media	of the course, the ics of mobile ap e application t manages memo bile OS like And PO6 PO7 PO8	estudent wil plication d ory dynamic droid, iOs PO9 PO10 2 2 2 3 3 2 2 2 2 3 no correla	PO11 2 2 3	PO12 3 2 2 2	PSO1 2 3	PSO2 3 2										
COURSE OUTCOMES: At the end CO1: Know the features of the basi tools CO2: Able to develop a UI for mobile CO3: Design mobile applications that CO4: Build applications based on mo CO5: Build location based services CO-PO MAPPING PO1 PO2 PO3 PO4 PO5 F CO1 3 2 2 2 2 2 CO2 2	of the course, the acs of mobile ap e application t manages memo bile OS like And PO6 PO7 PO8 PO6 PO7 PO8 um, 3 - high, '-'	e student will plication d pry dynamic troid, iOs PO9 PO10 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 0 correlation	Point PO11 2 2 2 3	PO12 3 2 2 2	PSO1 2 3	PSO2 3 2										
COURSE OUTCOMES: At the endCO1: Know the features of the basi toolsCO2: Able to develop a UI for mobileCO3: Design mobile applications thatCO4: Build applications based on moCO5: Build location based servicesCO-PO MAPPING $\hline CO1 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 $	of the course, the ics of mobile ap e application t manages memo bile OS like And PO6 PO7 PO8 PO6 PO7 PO8 um, 3 - high, '-'	estudent wil plication d ory dynamic broid, iOs PO9 PO10 2 2 2 3 3 2 2 2 3 2 2 3 no correla	POI1 2 2 3 tion	PO12 3 2 2 5, First 1	PSO1 2 3 Edition	PSO2 3 2 , 2014.										
COURSE OUTCOMES: At the end <td c<="" td=""><td>of the course, the ics of mobile ap e application t manages memo bile OS like And PO6 PO7 PO8 PO6 PO7 PO8 um, 3 - high, '-' 4 Application Do 5. Blake Meike</td><td>estudent will plication d pry dynamic lroid, iOs PO9 PO10 2 2 2 3 2 2 2 3 2 2 3 2 2 3 no correla evelopment e, Masumi</td><td>T(1 be able evelopm ally PO11 2 2 2 2 3 tion ",Wiley Nakan</td><td>PO12 3 2 2 5, First l nura, "</td><td>PSO1 2 3 Edition</td><td>PSO2 3 3 2 , 2014. mming</td></td>	<td>of the course, the ics of mobile ap e application t manages memo bile OS like And PO6 PO7 PO8 PO6 PO7 PO8 um, 3 - high, '-' 4 Application Do 5. Blake Meike</td> <td>estudent will plication d pry dynamic lroid, iOs PO9 PO10 2 2 2 3 2 2 2 3 2 2 3 2 2 3 no correla evelopment e, Masumi</td> <td>T(1 be able evelopm ally PO11 2 2 2 2 3 tion ",Wiley Nakan</td> <td>PO12 3 2 2 5, First l nura, "</td> <td>PSO1 2 3 Edition</td> <td>PSO2 3 3 2 , 2014. mming</td>	of the course, the ics of mobile ap e application t manages memo bile OS like And PO6 PO7 PO8 PO6 PO7 PO8 um, 3 - high, '-' 4 Application Do 5. Blake Meike	estudent will plication d pry dynamic lroid, iOs PO9 PO10 2 2 2 3 2 2 2 3 2 2 3 2 2 3 no correla evelopment e, Masumi	T(1 be able evelopm ally PO11 2 2 2 2 3 tion ",Wiley Nakan	PO12 3 2 2 5, First l nura, "	PSO1 2 3 Edition	PSO2 3 3 2 , 2014. mming									
COURSE OUTCOMES: At the endCO1: Know the features of the basi toolsCO2: Able to develop a UI for mobile CO3: Design mobile applications that CO4: Build applications based on moCO2: Able to develop a UI for mobile applications based on moCO3: Design mobile applications that CO4: Build location based servicesCO4: Build location based servicesCO-PO MAPPING $\hline PO1 \ PO2 \ PO3 \ PO4 \ PO5 \ PO5 \ PO1 \ CO1 \ 3 \ 2 \ 2 \ CO2 \ 2 \ 2 \ 2 \ CO2 \ 2 \ 2 \ 2 \ CO3 \ 2 \ 2 \ 2 \ CO4 \ 2 \ 2 \ 2 \ CO5 \ 2 \ 3 \ 2 \ CO5 \ 2 \ 3 \ 2 \ CO5 \$	of the course, the ics of mobile ap e application t manages memo bile OS like And PO6 PO7 PO8 PO6 PO7 PO8 um, 3 - high, '-' 4 Application Do 5. Blake Meike 016.	e student will plication d rry dynamic droid, iOs PO9 PO10 2 2 2 3 2 2 2 3 2 2 3 2 2 3 no correla evelopment o, Masumi	Point 2 2 2 3 ttion ",Wiley Nakan	PO12 3 2 2 2 5, First l nura, "	PSO1 2 3 Edition	PSO2 3 3 2 , 2014. mming										
COURSE OUTCOMES: At the end of CO1: Know the features of the basi toolsCO2: Able to develop a UI for mobileCO2: Able to develop a UI for mobileCO2: Able to develop a UI for mobileCO3: Design mobile applications thatCO4: Build applications based on moCO5: Build location based servicesCO-PO MAPPING $\boxed{P01}$ P02P03P04P05F $\boxed{C01}$ 32211 $\boxed{C02}$ 22211 $\boxed{C04}$ 22211CO4 2221CO4 2221CO4 2221I-low, 2 - mediuREFERENCE BOOKS:1.Reto Meier, "Professional Android 2.ZigurdMednieks, LairdDornin, GAndroid", O'Reilly, 2nd Edition, 203.Alasdair Allan, "iPhone Programmi	of the course, the ics of mobile ap e application t manages memo bile OS like And PO6 PO7 PO8 PO6 PO7 PO8 um, 3 - high, '-' 4 Application Do 5. Blake Meike PO6.	estudent wil plication d ory dynamic hoid, iOs PO9 PO10 2 2 2 3 3 2 2 2 3 2 2 3 no correla evelopment c, Masumi	Point PO11 2 2 3 tion ",Wiley Nakan , 2013.	PO12 3 2 2 5, First I nura, "	PSO1 2 3 Edition	PSO2 3 3 2 , 2014. mming										

India, 2013

5.Barry Burd,"Android Application Development All in one for Dummies", First Edition, Wiley India, 2011

6.Erik Hellman, "Android programming-Pushing the Limits", First Edition, Wiley India Pvt Ltd, 2014.

WEB RESOURCES:

1. https://www.ibm.com/topics/mobile-application-development

2. https://appicontemplate.com/

IT626211 - VIRTUAL AND AUGMENT REALITY **Course Type:** L Т Р С **Course Category: Programme Elective** Theory 3 0 0 3 **COURSE OBJECTIVES:** To study about Fundamental Concept and Components of Virtual Reality • To study about Interactive Techniques in Virtual Reality ٠ To study about Visual Computation in Virtual Reality • To study about Augmented and Mixed Reality and Its Applications • To know about I/O Interfaces and its functions. • **UNIT 1: INTRODUCTION TO VIRTUAL REALITY** 9 Introduction, Fundamental Concept and Components of Virtual Reality. Primary Features and Present Development on Virtual Reality. Computer graphics, Real time computer graphics, Flight Simulation, Virtual environment requirement, benefits of virtual reality, Historical development of VR, Scientific Landmark 3D Computer Graphics: Introduction, The Virtual world space, positioning the virtual observer, the perspective projection, human vision, stereo perspective projection, 3D clipping, Colour theory, Simple 3D modelling, Illumination models, Reflection models, Shading 24 algorithms, Radiosity, Hidden Surface Removal, Realism Stereographic image. **UNIT 2: INTERACTIVE TECHNIQUES IN VIRTUAL REALITY** 9 Introduction, from 2D to 3D, 3D spaces curves, 3D boundary representation Geometrical Transformations: Introduction, Frames of reference, Modeling transformations, Instances, Picking, Flying, Scaling the VE, Collision detection Generic VR system: Introduction, Virtual environment, Computer environment, VR technology, Model of interaction, VR Systems. UNIT 3: VISUAL COMPUTATION IN VIRTUAL REALITY 9 Animating the Virtual Environment: Introduction, The dynamics of numbers, Linear and Nonlinear interpolation, the animation of objects, linear and non-linear translation, shape &object in betweening, free from deformation, particle system. Physical Simulation: Introduction, Objects falling in a gravitational field, Rotating wheels, Elastic collisions, projectiles, simple pendulum, springs, Flight dynamics of an aircraft. **UNIT 4: AUGMENTED AND MIXED REALITY** 9 Taxonomy, technology and features of augmented reality, difference between AR and VR, Challenges with AR, AR systems and functionality, Augmented reality methods, visualization techniques for augmented reality, wireless displays in educational augmented reality applications, mobile projection interfaces, marker-less tracking for augmented reality, enhancing interactivity in AR environments, evaluating AR systems. **UNIT 5: I/O INTERFACE IN VR & APPLICATION OF VR** 9 Human factors: Introduction, the eye, the ear, the somatic senses. VR Hardware: Introduction, sensor hardware, Head-coupled displays, Acoustic hardware, Integrated VR systems. VR Software: Introduction, Modeling virtual world, Physical simulation, VR toolkits, Introduction to VRML, Input -- Tracker, Sensor, Digitalglobe, Movement Capture, Video-based Input, 3D Menus & 3DScanner etc. Output -- Visual /Auditory / Haptic Devices. VR Technology in Film & TV Production. VR Technology in Physical Exercises and Games. Demonstration of Digital Entertainment by VR. **TOTAL: 45 PERIODS** COURSE OUTCOMES: At the end of the course, the student will be able to CO1: Able to know the Fundamental Concept and Components of Virtual Reality

CO2: Able to know the Interactive Techniques in Virtual Reality

CO3: Get the knowledge about Visual Computation in Virtual Reality

CO4: Able to know the concepts of Augmented and Mixed Reality and Its Applications

CO5: Know about I/O Interfaces and its functions.

CO-PO MAPPING

		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CC) 1	3	2	2						2	2	2	3	3	
CC)2	2	2	2						2	3	2	3	3	
CC)3	2		2						3	2	3	2	2	2
CC)4	2	2	2						2	2	2	2		3
CC)5	2	3	2						2	3	2	2		2

1-low, 2 - medium, 3 - high, '-' no correlation

REFERENCE BOOKS:

1.Alan B. Craig, "Understanding Augmented Reality, Concepts and Applications", Morgan Kaufmann, First Edition 2013.

2.Alan Craig, William Sherman and Jeffrey Will, "Developing Virtual Reality Applications, Foundations of Effective Design", Morgan Kaufmann, 2009.

3. John Vince, "Virtual Reality Systems", Pearson Education Asia, 2007.

4.Adams, "Visualizations of Virtual Reality", Tata McGraw Hill, 2000.

5.William R. Sherman, Alan B. Craig, "Understanding Virtual Reality: Interface, Application and Design", Morgan Kaufmann, 2008

6.Burdea, G. C. and P. Coffet. Virtual Reality Technology, Second Edition. Wiley-IEEE Press, 2003/2006.

WEB RESOURCES:

1. http://virtualrealityforeducation.com/resources/

2.https://www.fusionvr.in/industry-academic-alliance

program?gclid=Cj0KCQjwocShBhCOARIsAFVYq0gk9Ihi2C8xFtgTEQahsKUeax_sMHHK bIYPpQnjFRldyW20i62iexcaAvtNEALw_wcB

IT626212 - MULTIMEDIA DATABASES												
Course Category: Programme	CT		L	Т	P	С						
Elective	Course I	ory	3	0	0	3						
COURSE OBJECTIVES:												
• To familiarize about the database indexing methods and different												
multidimensional data stru	ctures.			U								
• To learn about text databas	se, its storag	ge and	retri	leval								
• To learn about image database, its storage and retrieval												
• To understand about Audio and Video Storage.												
• To understand design and architecture of a Multimedia Database.												
UNIT 1: DATABASE INDEXING METHODS 9												
Hashing – B-trees – Secondary Ke	ey Access	Metho	ods -	– Inve	rted F	iles –	Point	Access				
Methods (PAMs) –Spatial Access Me	ethods (SAI	Ms) – S	Spac	e Fillir	ng Curv	ves – T	ransfor	mation				
to Higher–D Points – Multidimension	nal Data Str	ucture	s - I	K-D Tr	ees – F	oint Q	uadtree	es– The				
MX–Quadtree– RTrees.												
UNIT 2: TEXT DATABASES								9				
Precision and Recall – Stop Lists –	Word Sten	ns and	Fre	quency	7 Table	s – La	tent Se	emantic				
Indexing – TV-Trees – Indexing Tex	xt and DNA	A Strin	ngs –	- Acce	ss Met	hods fo	or Text	– Full				
Text Scanning – Inversion – Signature	e Files – Ve	ector S	space	e Mode	l and C	lusteri	ng.					
UNIT 3: IMAGE RETRIEVAL MI	ECHANIS	MS						9				
Image Databases – Raw Images – C	Compressed	i Imag	ge R	epreser	ntations	s - Sin	nilarity	Based				
Retrieval – Alternative Image DB P	aradigms –	- Repro	esen	ting In	nage D	Bs wit	h Rela	tions –				
Representing Image DBs with R	-Trees –	Retrie	eving	j Imag	ges by	Spati	al Lag	yout –				
Implementations.	ana							0				
UNIT 4: AUDIO/VIDEO DATABA	ASES			a , .	•	1. 0		9				
Audio Databases – A General Mode	el OI Audio	o Data	a - c	Lapturi	ng Au	dio Co	ontent t	nrougn				
Single Video Querving Content of V	Audio Dala		0 Da		s – Org montoti	anizing	g Come	ent of a				
UNIT 5. MULTIMEDIA DATABA	SE DESIC	$\frac{1105}{1}$	viue	eo segi	nemati	011.		0				
Design and Architecture of a Multim	edia Datab		Orag	nizina	Multi	nedia I	Data ha	y sed on				
the Principle of Uniformity – Me	dia Abstra	ctions	– (Ouerv	Langu	ages f	or Ret	rieving				
Multimedia Data	ula Abstra	cuons	— 、	Query	Langu	ages r		neving				
					тс	TAL	45 PE	RIODS				
COURSE OUTCOMES: At the end of	of the cours	e. the s	stude	ent will	be able	to	-010					
CO1: Apply database indexing methods for efficient storage and retrieval of multimedia												
content												
CO2: Work with Text databases, its storage and retrieval.												
CO3: Demonstrate about the Image database, its storage and retrieval.												
CO4: Formulate and generalize the use of audio and video databases for real time multimedia												
applications.												
CO5: Apply multimedia database design for multimedia architecture.												
CO-PO MAPPING												
IOI IO2 IO3 IO3 IO3 I CO1 3 2 2 </td <td></td> <td>100 1</td> <td>2</td> <td>2</td> <td>2</td> <td>3</td> <td>3</td> <td>1502</td>		100 1	2	2	2	3	3	1502				
CO2 2 2 2 2			2	3	2	3	3					
CO3 2 3 2 CO3 2 3 2			3	2	3	2	2	2				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			3	2	3	2		3				
1_ low 7 _ modir	1m 3 - hial	h '_' *		∠ nrrolat	ے ion	L		2				
1 - 10 w, $2 - 10$ curu	, 5 - mgi	, - 1		JIICIAL	1011							

REFERENCE BOOKS:

1.Christos Faloutsos, "Searching Multimedia databases by Content", Kluwer Academic Publishers,2011.

2.V. S. Subramanian, "Principles of Multimedia Database Systems", Harcourt India Pvt Ltd., 2001.

3.Lynne Dunckley, "Multimedia Databases: An Object Relational Approach", Pearson Education, 2003.

4.S. Khoshafian, A. B. Baker, "Multimedia and Imaging Databases", Elsevier, 1996.

5.C. Kingsley Nwosu, "Multimedia Database Systems: Design and Implementation Strategies", Kluwer Academic Publishers, 2012.

6.R. Elmasri, S. B. Navathe, "Fundamentals of Database Systems", Seventh edition, Pearson Education, 2017.

WEB RESOURCES:

1. https://researchguides.dartmouth.edu/c.php?g=59724&p=382829

2. https://www.tutorialspoint.com/Multimedia-Databases
PROGRAMME ELECTIVE -V

CS624221 - MULTIMID	IA AND C	OMPRES	SION '	<u>TECH</u>	NIQUI	ES	
Course Category: Programme	Course T	vno. Thoo	PX 7	L	Τ	P	С
Elective	Course 1	ype: Theo	Ju y	3	0	0	3
COURSE OBJECTIVES:							
• To understand the basic ide	eas of com	pression a	algorith	ims re	lated t	o mult	timedia
components							
• To learn the Text compression	algorithms	5					
• To get the knowledge of Imag	e compress	ion algorit	hms				
• To know the features of Audio	o compressi	on algorith	nms				
To know the features of Video	o compressi	on algorith	nms				I
UNIT 1: FUNDAMENTALS OF C	OMPRESS	SION					9
Introduction To multimedia – Graph	hics, Image	e and Vide	eo repr	esentat	tions –	Funda	imental
concepts of video, digital audio – Stor	rage require	ements of r	nultime	edia ap	plicatio	ns - N	eed for
compression – Taxonomy of compre	ession Algo	orithms - E	Element	ts of Ii	nformat	tion Th	neory –
Error Free Compression – Lossy Com	pression.						0
UNIT 2: TEXT COMPRESSION							. 9
Huffman coding – Adaptive Huffmar	$1 \operatorname{coding} - 1$	Arithmetic	coding	g – Sha	annon-l	Fano co	oding –
Dictionary techniques – LZW family	algorithms.						0
UNIT 3: IMAGE COMPRESSION	Compros	cion Stand	orda	IDEC	Standar	rd Cu	9 h hand
and a wavelet Pased compression	- Compress	ontotion w	aius – Jing Eil	JFLU tore	Stanuai EZW	CDILT	oodora
- IPEG 2000 standards - IBIG and IE	I – Implem RIG2 standa	entation us	sing rin			SFIIII	couers
UNIT 4: AUDIO COMPRESSION	JIO2 standa	ii us.					0
Audio compression Techniques –	law A-Lay		Inding	– Fre	allency	doma	in and
filtering – Basic sub-band coding – A	Application	to speech	coding	r - G.7	22 - N	IPEG a	audio –
progressive encoding – Silence con	pression.	Speech co	mpress	ion –	Forma	nt and	CELP
vocoders.	r,	-1	r				-
UNIT 5: VIDEO COMPRESSION							9
Video compression techniques and St	tandards – I	MPEG vid	leo cod	ing: M	PEG-1	and M	IPEG-2
video coding: MPEG-3 and MPEG-4	4 – Motion	estimatio	n and	compe	nsation	techni	iques –
H.261 Standard – DVI technology	– DVI re	al time c	ompres	sion -	- Curre	ent Tre	ends in
Compression standards.							
				TC)TAL:	45 PE	RIODS
COURSE OUTCOMES: At the end of	of the course	e, the stude	ent will	be able	e to		
CO1: Implement basic compression	algorithms	familiar v	with the	e use o	of MA	ГLAB	and its
equivalent open source environments							
CO2: Design and implement the Text	t compressi	on algorith	nms				
CO3: Analyse different approaches of	f image con	npression a	lgorith	ms in 1	nultim	edia pr	ojects.
CO4: Analyse different approaches of	f audio com	pression a	lgorith	ns in n	nultime	edia pro	jects.
CO5: Design and implement the vide	o compress	sion algorit	hms				
CO-PO MAPPING							
PO1 PO2 PO3 PO4 PO5 P	PO6 PO7 I	PO8 PO9	PO10	PO11	PO12	PSO1	PSO2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		2	2	<u> </u>	3	<u>२</u>	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		2	2	2	2	5	2
CO4 2 2 2		2	3	2	2		3
CO5 2 3 2		2	2	2	2		2
1- low, 2 – medi	um, 3 – hig	gh, '-' no d	correla	tion			

REFERENCE BOOKS:

1.Cold McAnlis and AleksHaecky, "Understanding Compression: Data Compression for Modern Developers", O'Reilly, 2016

2.Khalid Sayood: Introduction to Data Compression", Morgan Kauffman Harcourt India, Third Edition, 2010.

3.David Solomon, "Data Compression – The Complete Reference", Fourth Edition, Springer Verlog, New York, 2006.

4. Mark S. Drew, Ze-Nian Li, "Fundamentals of Multimedia", PHI, 2009.

5.Raymond Westwater and BorkoFurht," Real-time Video Compression: Techniques and Algorithms", Springer, 2013.

6.Yun Q.Shi, Huifang Sun, "Image and Video Compression for Multimedia Engineering, Algorithms and Fundamentals", CRC Press, 2003.

WEB RESOURCES:

1.https://www.analytixlabs.co.in/blog/data-compression-technique/

2.https://www.alibabacloud.com/knowledge/hot/digital-video-compression-techniques

IT6262	13 - REMOTE SENSING				
Course Category: Programme	Course Tunes Theory	L	Т	Р	С
Elective	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:					
• To familiarize about the ba	sic principles of remote sen	sing			
• To acquire knowledge abo	ut the motion of remote sen	sing sat	ellites in	n the s	pace
• To expose the various type	es of sensors used for remote	e sensin	g		L
• To gain knowledge about t	he generation of satellite da	ta prodi	ıcts		
• To extract useful informati	on from satellite images	1			
UNIT 1: PHYSICS OF REMOTE 	SENSING				9
Remote Sensing - Defintion - Compo	nents - Electro Magnetic Sp	ectrum	- Basi	c wave	theory
- Particle theory - Stefan Boltzman 1	aw - Wiens-Displacement I	Law - R	adiome	tric qu	antities
- Effects of Atmosphere- Scattering	- Different types -Absor	ption-A	tmosph	eric w	indow-
Energy interaction with surface feature	res – Spectral reflectance of	vegeta	tion, so	il and	water –
atmospheric influence on spectral resp	ponse patterns- multi concep	ot in Re	mote se	nsing	
UNIT 2: PLATFORMS					9
Orbit elements – Types of orbits – Mo	ptions of planets and satellit	es – Lai	unch of	space	vehicle
- Orbit perturbations and maneuvers -	 escape velocity - Types ar 	nd chara	cteristi	cs of d	ifferent
remote sensing platforms – sun synch	ronous and geo synchronou	s satelli	tes.		
UNIT 3: SENSORS					9
Classification of remote sensors –	selection of sensor parame	eters -	resoluti	on co	ncept -
Spectral, Radiometric and temporal	resolution – Quality of	images	– ima	ging r	node –
photographic camera – opto-mechan	ical scanners – pushbroom	and wh	iskbroc	om car	neras –
Panchromatic, multi spectral, therr	nal, hyperspectral scanners	and n	nicrowa	ve sei	isors –
geometric characteristics of scanne	r imagery – Operational	Earth	resourc	e sate	llites -
Landsat, SPO1, IRS, World View, hyj	perion and hysis, ERS, ENV	15A1,5	entinel	•	0
UNIT 4: DATA RECEPTION AND	DATA PRODUCTS	actor	and in no		y I data
Ground segment organization – Data	output modium Digital				1 dala –
Fast GooTIFE Higrarchical and H	NE formate Indian and	Intorna	is – Su	per su Sotollit	Doto
Products ordering of data	n ionnais – mulan and	mema	lional	Satenn	e Data
LINIT 5. DATA ANAL VSIS					0
Data products and their characteristi	cs Elements of visual in	ternrete	tion	intern	retation
kevs = Digital image processing = Pr	eprocessing – Image rectifi	ration -	. Image	enhan	cement
techniques_ Image classification = Si	inervised and unsupervised	classifi	cation a	lgorit	nms for
multispectral and hyperspectral im	ages – Accuracy assess	nent -	hvbrid	classi	fication
techniques – Knowledge based of	lassification Neural Net	vork C	lassific	ation	Fuzzy
Classification.		von c	14551110	ution,	1 4225
		ТС	TAL:	45 PE	RIODS
COURSE OUTCOMES: At the end of	of the course, the student will	be able	e to		
CO1: Know the concepts and laws rel	ated to remote sensing				
CO2: Acquire knowledge about vario	us remote sensing platforms	5			
CO3: Acquire the knowledge of the c	haracteristics of different ty	pes of r	emote s	ensors	
CO4: Apply the knowledge about r	eception, product generation	on. stor	age and	1 orde	ring of
satellite data.	r · · · · · · · · · · · · · · · · ·	, 2001	0- 444		0
CO5: Design the basic concept of dif	ferent image processing tecl	nniques	and int	erpreta	ation of
satellite data		1		1	-

CO-P	O MA	APPIN	IG											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2						2	2	2	3	2	
CO2	2	2	2						2	3	2	3	3	
CO3	2	2	2						3	2	3	2	2	
CO4	2	2	2						2	2	2	2		3
CO5	2	3	2						3	2	2	2		2
			1- l	low, 2	- med	lium,	3 - hi	gh, '-'	no c	orrelat	ion			
REFE	EREN	CE B	OOK	5:										
1.Tho	mas l	Lillesa	nd, F	R.W.K	iefer	and .	Jonath	an C	hipma	ın, "Re	emote	Sensin	g and	Image
interp	retatio	on", W	iley, S	Sevent	th edit	ion, 2	015.							
2.Johr	n R. J	ensen,	"Intro	ducto	ry Dig	gital I	mage	Proce	ssing:	A Re	mote S	ensing	Perspe	ective",
Pearso	on Edu	uction,	, 4th E	dition	, 2010	5.								
4.Paul	J. Cu	rran. '	'Princ	iples o	ofRen	note S	ensing	g", Lo	ngma	n Scien	tific &	Techn	ical, 19	86.
5.Geo	rge J	oseph	, C.J	egana	than,	"Fun	damer	ntals	of R	emote	Sensir	ng", T	hird H	Edition,
Unive	rsities	Press	(India	a) Pvt	Ltd, H	Hydera	abad, 2	2018.				-		
6.S. C	C. Bha	ntia,"F	undar	nental	s of H	Remot	e Sen	sing",	Atlaı	ntic Pu	blisher	s & D	istribut	ors (P)
Limite	ed,200)8.						-						
WEB	RES (OURC	CES:											
1. http	://ww	w.gps	world	.com/										
<u> </u>	// 1		1	/ 101	1, 1									

2. http://rsl.gis.umn.edu/rs101.html

					IT626	5214 -	GRII) COI	MPUT	TING				
Cours	se Cat	egory	: Pro	gram	ne	C		Type	The	MX 7	L	Т	Р	С
Electi	ve						Jurse	Type	1 neu	pry	3	0	0	3
COU	RSE ()BJE(CTIV	ES:										
	•]	o lear	rn the	basics	of gri	d con	nputin	g		·				
	•]	lo kno	ow the	grid c	compu	ting ii	nitiativ	/es						
	•]	To lear	rn the	applic	ation	of grie	d com	puting	5					
	•]	To kno	ow the	featu	res of	the G	rid co	mputi	ng tec	hnolog	v			
	•]	lo unc	lerstar	nd the	tool k	its to f	facilita	ated th	ie grid	compi	iting			
									0	ł	0			
UNIT	'1: G	RID (COM	PUTI	NG									9
Introd	uctior	- Det	finitio	n and	Scope	of gri	d con	putin	g					
UNIT	'2: GI	RID C	COMP	UTIN	GIN	ITIĂI	IVES	5	0					9
Grid	Com	puting	g Or	ganiza	ations	and	thei	r ro	les -	- Gri	d Co	mputin	g ana	log –
Grid C	Compi	iting r	oad m	nap.								1	C	U
UNIT	' 3: G	RID	СОМ	PUTI	NG A	PPLI	CATI	ONS						9
Mergi	ng the	Grid	sourc	es – A	rchite	cture	with tl	he We	b Dev	vices A	chitect	ture.		
UNIT	'4: T	ECHN	NOLC	GIES	5									9
Acting	g und	er U	ncerta	inty,	Basic	Prob	ability	Not	ation,	Repre	senting	g Knov	wledge	in an
Uncer	tain I	Doma	in, Tł	ne Se	manti	cs of	Baye	sian	Netwo	orks, E	Efficien	t Rep	resentat	ion of
Condi	tional	Distr	ibutio	ns, Ex	act In	ferenc	e in E	Bayesi	an Ne	tworks	, Appr	oximat	e Infer	ence in
Bayes	ian N	etworl	ks, Ex	tendin	g Pro	babilit	y to F	First-C	order H	Represe	ntatior	ns, Oth	er Appr	oaches
to Un	certair	n Reas	soning	•										
UNIT	' 5: G l	RID C	COMP	UTIN	IG TO	OL K	KITS							9
Induct	tive le	arning	g for c	classifi	catior	n, deci	sion-t	ree in	ductio	on, neu	ral-netv	works:	represe	ntation
and tra	aining	•												
											TC)TAL:	45 PE	RIODS
COU	RSE (DUTC	OME	S: At	the en	d of th	e cour	se, the	e stude	ent will	be able	e to		
CO1:	Acqui	re the	know	ledge	of the	basic	s of gi	rid coi	mputii	ng				
CO2:	Know	the fe	eature	s of th	e grid	comp	uting	initiat	ives					
CO3:	Know	the a	pplica	tion of	f grid	comp	uting							
CO4:	Apply	the C	Grid co	omputi	ing tec	hnolo	gy							
CO5:	Devel	op the	e tool l	kits to	facilit	ated t	he gri	d com	puting	5				
CO-P	O MA	PPIN	IG						r			1	1	
001	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
$\frac{COI}{CO2}$	3	2	2									3	2	
CO2	2	2	2									2	2	
CO4	2	2	2									2	_	3
CO5	2	3	2									2		2
			1- l	low, 2	- med	lium,	3 - hi	gh, '-'	no c	orrelat	ion			
REFF	EREN	CE B	OOK	S:										
1.Josh	iy Jose	eph &	Craig	Felle	nstein	, "Grio	d Com	puting	g", Pe	arson E	ducati	on, 200)4.	
2.Ahn	nar A	bbas,	"Gric	l Con	puting	g: A	Practi	cal G	uide	to tech	nology	and .	Applica	tions",
Charle	es Riv	er me	dia – 2	2004.										
3.Barı	ry Wi	lkinsc	on," C	brid C	ompu	tingTo	echniq	ues a	nd A	pplicat	ions,"	Taylor	and F	rancis,
2010.														
4.Hai	Zhuge	,"Gric	and (Coope	rative	Comp	outing	", Spr	inger,2	2005.				
5.Free	leric	Mago	oules,'	'Funda	amenta	als o	of Gr	rid C	Compu	ting-	Theory	y, Alg	gorithm	s and

Technologies", CRC Press, 2019.

6.Lizhe Wang, Wei Jie, Jinjun Chen," Grid Computing- Infrastructure, Service, and Applications", CRC Press, 2018.

WEB RESOURCES:

1. https://www.spiceworks.com/tech/cloud/articles/what-is-grid-computing/

2. https://www.geeksforgeeks.org/grid-computing/

IT62	6215 - WEB MINING				
Course Category: Programme	Course Type: Theory	L	Т	Р	С
Elective	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:					
• To define the web mining a	and understand the need for	web m	ining		
• To know the features of su	pervised and unsupervised a	lgorith	m		
• To learn the methods of inf	formation retrieval and web	search	algorith	m	
• To know the different appl	ication areas for web mining	5			
• To learn the methods of W	eb usage mining				
UNIT 1: INTRODUCTION					9
Web Data Mining and Data Mining F	Foundations, Introduction –	World	Wide V	Veb (V	VWW),
A Brief History of the Web and the	Internet, Web Data Mining-	Data N	Aining,	Web N	Aining.
Data Mining Foundations – Associat	ion Rules and Sequential Pa	atterns	- Basi	c Conc	epts of
Association Rules, Apriori Algorith	hm- Frequent Itemset Gen	neration	n, Asso		n Rule
Generation, Data Formats for Assoc	Algorithm Bule Concretion	ig witt	1 multi	pie mi	nimum
Supports – Extended Model, Mining	Patterna Mining Sequentia	1 Dotto	rng Clas	CSD 1	Mining
Sequential Patterns on Prefix Span Ge	preserving Rules from Sequence	ii rauc tial Pat	terns	USF, I	vinning
UNIT 2. SUPERVISED AND UNSU	PERVISED LEARNING				Q
Supervised Learning – Basic Conce	epts Decision Tree Induct	ion –	Learnir	g Alg	orithm
Impurity Function, Handling of Cont	inuous Attributes. Classifier	Evalu	ation. R	ule Ind	duction
- Sequential Covering, Rule Learning	, Classification Based on A	ssociat	ions, Na	aïve Ba	avesian
Classification, Naïve Bayesian Te	ext Classification – Proba	bilistic	Frame	ework,	Naïve
Bayesian Model . Unsupervised Learn	ning – Basic Concepts, K-m	neans (Clusteri	ng – K	-means
Algorithm, Representation of Clust	ers, Hierarchical Clusterin	ng – S	Single	link n	nethod,
Complete link Method, Average link	method, Strength and Weaki	ness.			
UNIT 3: INFORMATION RETRIE	EVAL AND WEB SEARCI	I			9
Basic Concepts of Information Retrie	eval, Information Retrieval	Metho	is – Bo	olean	Model,
Vector Space Model and Statistical	l Language Model, Releva	ince F	eedbacl	k, Eva	luation
Measures, Text and Web Page Prepr	cocessing – Stopword Rem	oval, S	temmin	ıg, We	b Page
Preprocessing, DuplicateDetection, In	nverted Index and Its Com	pressio	n - ln	verted	Index,
Search using inverted index, index	Construction, Index Con	ipressio	on, Lat	ent Se	mantic
Web Spamming	sition, Query and Retrieval,	web :	Searcn,	Meta .	Search,
Web Spanning.	TR CDAWI INC				0
Link Analysis – Social Network An	alysis Co-Citation and Ri	hlingra	nhic Co	ounling	7 Page
Rank Algorithm HITS Algorithm Co	ommunity Discovery-Proble	m Defi	nition	Rinarti	te Core
Communities. Maximum Flow Comm	nunities. Email Communitie	s. Web	Crawli	ing – A	A Basic
Crawler Algorithm- Breadth First Cr	awlers, Preferential Crawle	rs, Imp	lement	ation Is	ssues –
Fetching, Parsing, Stopword Remov	al, Link Extraction, Spide	r Trap	os, Pag	e Repo	ository,
Universal Crawlers, Focused Crawlers	s, Topical Crawlers, Crawler	Ethics	and Co	onflicts	5.
UNIT 5: OPINION AND WEB USA	GE MINING				9
Opinion Mining and Opinion Minin	g – Sentiment Classificatio	n – Cl	assifica	tion ba	used on
Sentiment Phrases, Classification Usi	ng Text Classification Meth	ods, Fe	eature b	ased C	D pinion
Mining and Summarization – Pro	blem Definition, Object	feature	extrac	tion, 1	Feature
Extraction from Pros and Cons of For	mat1, Feature Extraction fro	m Rev	iews of	Forma	t 2 and
3, Comparative Sentence and Relative	on Mining, Opinion Search	n and (Jpinior	Span	n. Web
Usage Mining – Data Collection a	na Preprocessing- Sources	and for V	vpes (of Dat	a, Key
clements of web usage Data Prep	nocessing, Data Modeling	IOT V	wed U	sage N	viimng,

Discovery and Analysis of Web usage Patterns -Session and Visitor Analysis, Cluster Analysis and Visitor Segmentation, Association and Correlation Analysis, Analysis of Sequential and Navigation Patterns.

TOTAL: 45 PERIODS

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1: Describe web mining and understand the need for web mining CO2: Apply the features of supervised and unsupervised algorithm

CO3: Apply the methods of information retrieval and web search algorithm

CO4: Develop the different application areas for web mining

CO5: Design the methods of Web usage mining

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2						2	2	2	3	2	
CO2	2	2	2						2	2	2	3	3	
CO3	2	2	2						3	2	3	2		3
CO4	2	2	2						3	2	3	2		3
CO5	2	3	2						2	2	2	2		2

1-low, 2 - medium, 3 - high, '-' no correlation

REFERENCE BOOKS:

1. Bing Liu, "Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data", Springer Publications, Second Edition, 2013.

2. Jiawei Han, MichelineKamber,"Data Mining: Concepts and Techniques", Elsevier Publications, Fourth Edition, 2022

3.Anthony Scime, "Web Mining:: Applications and Techniques", Idea Group Publishing, 2005 4.SoumenChakrabarti, "Mining the Web: Discovering Knowledge from Hypertext Data", Elsevier Publications, Second Edition, 2002

5.Hsinchun Chen, "Dark Web-Exploring and Data Mining the Dark Side of the Web,20116.Zdravko Markov, Daniel T. Larose, Data Mining the WebUncovering Patterns in Web Content, Structure, and Usage,2007

WEB RESOURCES:

1. https://www.javatpoint.com/web-content-vs-web-structure-vs-web-usage-mining

2. https://www.geeksforgeeks.org/web-mining/

IT626216 - SOF	FWARE QUALITY ASSU	RANC	E		
Course Category: Programme	Course True of Theorem	L	Т	Р	С
Elective	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:					
• Tobe exposed to the Sof	tware Quality Assurance	(SQA)	archite	cture a	and the
details of SQA component	S.				
• To understand of how the	SQA components can be in	ntegrate	d into t	he proj	ect life
cycle.					
• To be familiar with the sof	tware quality infrastructure	•			
• To exposed to the manager	ment components of softwar	re quali	ty.		
• To be familiar with the sof	tware quality Standards, Ce	ertificati	on and	Assess	ments
UNIT 1: INTRODUCTION TO SO	OFTWARE QUALITY &	ARCHI	TECT	URE	9
Need for Software quality – Quali	ty challenges – Software	quality	assura	nce (S	QA) –
Definition and objectives – Software	quality factors- McCall ^s 's of	quality i	model –	- SQA	system
and architecture – Software Project II	te cycle Components – Pre	project	quality	compo	onents –
LINET 2: SOA COMPONENTS AND	DDAIECT I IEE CVCI I	г			0
Software Development methodologi	of Quality assurance of		in the	daval	9 opmont
process- Verification & Validation	- Reviews - Software 7	Testing	- Soft	ware '	Testing
implementations – Quality of softwa	re maintenance – Pre-Main	ntenance	e of sot	ftware	anality
components - Quality assurance to	ols - CASE tools for so	oftware	ouality	V - S	oftware
maintenance quality – Project Manage	ement.			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
UNIT 3: SOFTWARE QUALITY I	NFRASTRUCTURE				9
Procedures and work instructions - T	emplates - Checklists - 3S	develop	oment -	Staff t	raining
andcertification Corrective and preve	entive actions – Configurat	ion mai	nageme	nt – S	oftware
changecontrol - Configuration man	agement audit -Documenta	ation co	ontrol –	- Stora	ge and
retrieval.					
UNIT 4: SOFTWARE QUALITY	MANAGEMENT & MET	RICS			9
Project process control – Computer	ized tools - Software qual	lity met	rics –	Object	ives of
qualitymeasurement – Process metric	cs – Product metrics – Imp	lementa	tion – 1	Limitat	tions of
software metrics – Cost of software c	luality – Classical quality c	ost moc	e - Ex	tended	l model
- Application of Cost model.	ATIONIC & ACCECCMENT	тс			0
Quality management standards ISC	$\frac{\text{ATIONS & ASSESSMEN}}{0.001 \text{ and ISO }0000-3} = c$	15 Sanabilit	v Matu	rity M	odels
CMM and CMMI assessment metho	$\frac{1}{2}$	apaoint	y = SPI	ITTY M CE Pr	oiect -
SOA project process standards – IEF	E st 1012 & 1028 – Organ	ization	of Qual	itv As	surance
– Department management responsi	bilities – Project managen	nent res	sponsibi	ilities -	– SOA
units and other actors in SQA systems	S.		1		
`		T	OTAL:	45 PE	RIODS
COURSE OUTCOMES: At the end	of the course, the student wil	l be able	e to		
CO1: Describe the basic tenets of soft	ware quality and quality fac	ctors.	0.00		
CO2: Utilize the concepts in software	development life cycle				
CO3: Demonstrate their capability to	adopt quality standards				
CO4: Assess the quality of software p	product.				
CO5: Apply the concepts in preparing	g the quality plan & docume	ents.			
	· · · ·				

CO-PO MAPPING

	-													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		2							2		3	3	
CO2	2	2	2							3	2	3	3	
CO3	2	3	2							2	2	2		2
CO4	2	2	2									2		3
CO5	2	3	2							2		2		2

1-low, 2 - medium, 3 - high, '-' no correlation

REFERENCE BOOKS:

1.Daniel Galin, "Software Quality Assurance - From Theory to Implementation", Pearson Education Ltd UK, 2009.

2. MilindLimaye."Software Quality Assurance", TMH, New Delhi, 2011.

3. Daniel Galin, "Software Quality :Concepts and practice", IEEE/Wiley Publication, 2018.

4.Alan C. Gillies, "Software Quality: Theory and Management", International Thomson Computer Press, 2011.

5.Mordechai Ben-Menachem, "Software Quality: Producing Practical Consistent Software", International Thompson Computer Press, 2014.

6.KshirasagarNaik, PriyadarshiTripathy, "Software Testing and Quality Assurance: Theory and Practice", Wiley, 2008.

WEB RESOURCES:

1.https://www5.aptest.com/resources.html

2.https://www.geeksforgeeks.org/top-10-resources-to-learn-software-testing-in-2021/

INSTITUTE ELECTIVE

IT626901: MO	DERN SENSOR TECH	INO	DLOG	θY		
Course Category: Institute Elective	Course Type: Theory		L	T	P	C
			3	0	0	3
 To impart the fundamentals applications. To provide in depth knowledg To implement the sensors for To provide knowledge in me scientific activities. To impart understanding of implement of the sensors for the sensors. 	of sensor technology a ge in different types of So monitoring of Industrial easuring various physica atelligent sensors, micro-	and i ensor Equi il var senso	its sig rs. ipme: riable ors ar	gnificar nt. es durin nd Nanc	g indu	industrial strial and rs
UNIT 1: CHARACTERISTICS OF	SENSORS					9
Introduction to Instrument and their instruments – Dynamic characteristic elements – Indicating, Recording and	r representation – Stati cs of instruments – Tra display elements	c pe insdu	erform	hance c elements	haracte s – Inte	eristics of ermediate
UNIT-2: MEASUREMENT OF N	IECHANICAL COMP	ONE	ENTS)	romont	9 daviaas
Dimensional metrology – Mechanica gauging devices - Force measurement load cell – Pneumatic load cell – Ela and power measurements – Transmis	al, Electromechanical, P nt - Balance principle of stic force devices – Elec sion, Torsion, Driving, A	neum f forc ctrom Abson	natic, ce me necha rptior	Hydrau easurem nical m n type d	ulic dir ient – l ethods ynamo	nensional Hydraulic – Torque meter
UNIT-3 : SENSORS FOR EQUIPM	MENT MONITORING					9
Pressure measurement – Moderate pr Low pressure measurement – Calibi Measurement of temperature – No Electrical Methods of Temperature n Acoustics measurement.	ressure measurement – H ration of pressure gauge on electrical methods of neasurement – Radiation	ligh j es – 7 of To Met	press Temp empe thods	ure Brid berature brature – Flow	lgemar measu Measu measu	n Gauge – nrement – rement – nrement –
UNIT-4 : SENSORS FOR CONDI	FION MONITORING					9
Vibration and Noise monitoring – ' Corrosion monitoring – Material def – Performance trend monitoring – system technique in fault diagnostics.	Temperature monitoring ect monitoring - Acoust Selection of condition	g – V ic en mon	Wear nissic nitorin	behavi n moni ng tech	or mor toring niques	nitoring – technique – Expert
UNIT-5 : ADVANCEMENT IN SE	NSING TECHNOLOG	σY				9
Specific gravity measurements – M Moisture – pH value – Biomedical n devices - Smoke density measurem Sensors – Virtual Instrumentation	easurements of liquid le neasurements – Environ ent – Fibre optic Trans	evel - menta sduce	– Vis al air ers –	scosity polluti Micros	 Hum on measensors 	idity and surement – Smart
				TOTA	L: 45 I	PERIODS
COURSE OUTCOMES: At the end of	f the course, the student v	vill b	e able	e to		
CO1: Get the knowledge of various e	lements in sensor measu	reme	ent.			
CO2: Learn about the various sensors	s tor motion, vibration, fo	orce	and p	ower		
CO3: Familiarize with pressure, temp CO4: Find innovative solutions in mo conditions.	ponitoring physical param	eters	nts s duri	ng on-li	ne and	off-line
CO5: Analyse the fundamental princi	ples of advancement in s	sensc	or tec	hnology	1.	

CO-PO MAPPING

~~ .														
	DO1	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO
	POI	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	2	2	2		2	-	-	-	-	2	-	2	2	-
CO2	2	2	2		2	-	-	-	-	2	-	2	2	-
CO3	2	2			2	-	-	-	-	2	-	2	-	2
CO4	2	2			2	-	-	-	-	2	-	2	-	2
CO5	2	2	2		2	-	-	-	-	2		2	-	2
			1 - 10 ⁻	w. 2 -	mediu		- high	.'-' n	io cori	relatior	1			

TEXT BOOKS:

1.Nakra B.C. and Chaudhry K.K., "Instrumentation, Measurement and Analysis", Tata Mc Graw Hill, 4th Edition, 2017.

2.Wang L. and Gao R.X., "Condition Monitoring and Control for Intelligent Manufacturing", Springer - Verlog London Limited, 2006.

Reference Books

1.John Vetelino, AravindReghu, "Introduction to Sensors", CRC Press, 2017

2. Sinclair I.R., "Sensors and Transducers", Elsevier India Private Limited, 2001.

WEB RESOURCES:

1.https://www.techbriefs.com/component/content/article/tb/pub/features/articles/33212 2.https://www.hindawi.com/journals/js/2021/1527467/

IT626902: DECISION S	UPPORT AND INTEL	LIGENT	SYST	EMS	
Course Category: Institute Elective	Course Type:	L	Т	Р	С
Course Category. Institute Elective	Theory	3	0	0	3
COURSE OBJECTIVES:					
 To review and clarify the f Support Systems. To discuss the modelling and To understand the enterprise I To understand the intelligent i To discuss organizational and UNIT 1:DECISION MAKING ANI Decision Making: Introduction an Managerial decision making and Infe Need - framework for decision sup executive support systems - preview process. UNIT 2: MODELING AND ANAI 	analysis of the Decision OSS and knowledge man systems used in DSS. social implications of D D COMPUTERIZED S d Definitions - Mana ormation Systems - Man oport – concept of dec w of the modeling proc	Support nagement Decision S SUPPOR agers and nagers and ision sup cess-phas	sociated System Support T d Decis d comport sport sy ses of d	with s. System sion N uterized vstems lecision	Decision 15 9 Making - 1 support (DSS) – 1 making 9
DSS components- DSS classification	ons - Data warehousing	g access	analys	sis mi	ning and
visualization - modeling and analys Optimization via mathematical pro- multidimensional modeling – model	is- Static and dynamic ogramming – Heuristic base management.	models - program	– influe nming	nce dia – simu	agrams – lation –
UNIT 3 : ENTERPRISE DECISIO	N SUPPORT SYSTEM	1 S			9
Group decision making – Group a generation - enterprise information s - supply and value chain and DSS- systems - knowledge management mat UNIT 4 : INTELLIGENT SYSTEM Artificial intelligence (AI) – Conce expert systems-concepts, structure Engineering - knowledge acquisition – Inference techniques.	support systems- Technystems (EIS) – Comparison Supply chain problems ethods, technologies and MS pts and Definitions – I , types and benefits and validation - knowle	nologies ing and In s and sol tools. AI versus and pr edge repre	 Crea ntegratin utions - s natura roblems esentatio 	tivity ang EIS – Comp al intel – kr on – Te	and Idea and DSS puterized 9 ligence - nowledge echniques
UNIT 5 : IMPLEMENTATION, IN	NTEGRATION, AND I	МРАСТ	S		9
Implementation – Major issues of in integration – Intelligent DSS – Intell issues in integration - impact of management issues – impact of competitiveness – Issues of legality, j	nplementation – implen igent modelling and mo- nanagement support sy Individuals – Impacts privacy and ethics – Oth	nentation del mana /stems - on pro er societa	strategi gement overvie ductivit al impac	ies – M – prob ew – p y, qua ts.	fodels of lems and personnel llity and
			TOTA	L: 45 P	ERIODS
COURSE OUTCOMES: At the end	of the course, the student	t will be a	ble to		
CO1: Demonstrate an understanding	of the theory of decision	is and dec	cision a	nalysis	
CO2: Demonstrate the different mode CO3: Design an information system of business problem.	els used in the DSS using emerging tools and	d technolo	ogies fo	r a give	en
CO4: Describe the role of expert syst CO5: Illustrate the implementation, in	ems. ntegration and impacts o	of Decisio	on Suppo	ort Syst	ems

CO-PO MAPPING

001	0 1011		0											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2	2	-	-	-	-	-	-	2	-	-
CO2	2	2	-	-	2	-	-	-	-	-	-	2	-	-
CO3	2	2	2	-		-	-	-	-	-	-	2	-	-
CO4	2	2	-	-	2	-	-	-	-	-	-	2	-	-
CO5	2	2	2	2	2	-	-	1	-	-	I	2	I	-
				-				1						

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1.Efraim Turban and Jay E Aronson, "Decision Support and Intelligent Systems", Prentice Hall, 9thEdition, 2010.

2.Elain Rich, Kevin Knight and Shivashankar B. Nair, "Artificial intelligence", Tata McGraw-Hill Publishing Company Limited, 3rd Edition, 2009.

Reference Books:

1.Daniel J. Power, "Decision Support Systems: Concepts and Resources for Managers", Greenwood Publishing Group, 1st Edition, 2002.

2.Quazi Khabeer, "Business Process Management and Decision Support Systems", Alpha Science International Limited, 1stEdition, 2013.

WEB RESOURCES:

 $1.https://www.researchgate.net/publication/277703502_Intelligent_Decision_Support_Systems$

2.https://www.intechopen.com/chapters/10951