PSN College of Engineering and Technology

Department of Computer Science and Engineering

M.E - Computer Science and Engineering

R 2022- Curriculum and Syllabus (I to IV Semester)

PSN COLLEGE OF ENGINEERING AND TECHNOLOGY

(An Autonomous Institution Recognised by AICTE, New Delhi and Affiliated to Anna University, Chennai) Accredited with A+ Grade by NAAC. An ISO 9001:2015 Certified Institution **Melathediyoor, Tirunelveli – 627 152**

REGULATIONS – R2022 (Full Time)

M.E - Computer Science and Engineering

INDEX

SL. NO.	DESCRIPTION	PAGE NO.	
1	VISION AND MISSION OF THE INSTITUTE	3	
2	VISION AND MISSION OF THE DEPARTMENT	3	
3	PROGRAM OUTCOMES (POs)	4	
4	PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)	5	
5	PROGRAM SPECIFIC OUTCOMES (PSOs)	6	
CURRICULUM			
6	SEMESTER I	7	
7	SEMESTER II	7	
8	PROGRAMME ELECTIVE I	8	
9	PROGRAMME ELECTIVE II	8	
10	PROGRAMME ELECTIVES III	8	
11	PROGRAMME ELECTIVES IV	8	
12	PROGRAMME ELECTIVES V	8	
13	INSTITUTE ELECTIVES	9	
14	SYLLABUS – I SEMESTER	10	
15	SYLLABUS – II SEMESTER	21	
16	SYLLABUS - PROGRAMME ELECTIVE I	31	
17	SYLLABUS - PROGRAMME ELECTIVE II	42	
18	SYLLABUS - PROGRAMME ELECTIVES III	53	
19	SYLLABUS - PROGRAMME ELECTIVES IV	64	
20	SYLLABUS - PROGRAMME ELECTIVES V	75	
21	SYLLABUS - INSTITUTE ELECTIVES	86	

Vision and Mission of the Institute

Vision

Emerge as a pioneer institute inculcating engineering education and skills, research, values and ethics.

Mission

- To achieve greater heights of excellence in technical knowledge and skill development through innovative teaching and learning practices.
- To develop the state of art infrastructure to meet the demands of technological revolution.
- To improve and foster research in all dimensions for betterment of society.
- To develop individual competencies to enhance innovation, employability and entrepreneurship among students.
- To instill higher standards of discipline among students, inculcating ethical and moral values for societal harmony and peace

Vision and Mission of the Department

Vision

To emerge as a preeminence program to produce quality Computer Science and Engineering graduates.

Mission

- > To enhance professional and entrepreneurial skills through industry institute interaction to enable them in getting better placement
- > To promote research and continuing education
- To train the students according to their discipline to meet dynamic needs of the society

Program Outcomes (POs)

PO's No	KNOWLEDGE	STATEMENTS					
1	Engineering Knowledge:	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.					
2	Problem Analysis:	Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.					
3	Design / Development of Solutions:	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.					
4	Conduct Investigations of Complex Problems:	t Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.					
5	Modern Tool usage:	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an UN 2 of the limitations.					
6	The Engineer and Society:	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.					
7	Environment and Sustainability:	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.					
8	Ethics:	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.					

9	Individual and Team Work:	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
10	Communication:	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
11	Project Management and Finance:	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
12	Life-long Learning:	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Educational Objectives (PEOs)

S.No	Торіс	PEOs
PEO1	Fundamental Knowledge	Graduates will be able to perform in technical and managerial roles ranging from design, development and problem solving to suit to the industrial needs
PEO2	Career Development	Graduates will be able to successfully pursue higher education and also Graduates will have the ability to adapt, contribute and innovate new technologies in different domains of Computer Science and Engineering
PEO3	Social Identity	Graduates will be ethically and socially responsible engineers in Computer Science and Engineering disciplines

Program Specific Outcomes (PSOs)

Graduating student shall be able to:

PSO1	Proficient and Innovative with a strong cognizance in the IOT, through the application of acquired knowledge and skills.
PSO2	Design and Implement IOT based solutions for improving operational efficiency by investigating existing industrial environment.

Distribution of Courses - M.E (R22)	
	-

Sl. No	Course code	Course Name	Classification	L	Т	Р	С
		SEMESTER I					
1	CS624001	Applied Mathematics	PC	3	1	0	4
2	CS624002	Advanced Computer Architecture	PC	3	0	0	3
3	CS624003	Advanced Data Structures and Algorithms	PC	3	0	0	3
4	CS624004	Cryptography and Hashing	PC	3	0	0	3
5		Programme Elective -I	PE	3	0	0	3
6	AP620004	Research Methodology	IC	3	0	0	3
7	CS624501	Technical Seminar-I	EEC	2	0	0	1
8	CS624101	Data Structures Laboratory	PC	0	0	4	2
9		English for Manuscript Writing	IM	2	0	0	0
		SEMESTER II					
10	CS624005	Digital Image Processing Tools and Techniques	РС	3	0	0	3
11	CS624006	Network Design and Technologies	PC	3	0	0	3
12	CS624007	Cloud Computing Technologies	PC	3	0	0	3
13	CS624008	Internet Security	PC	3	0	0	3
14		Programme Elective -II	PE	3	0	0	3
15		Programme Elective -III	PE	3	0	0	3
16	CS624102	Image Processing Laboratory	PC	0	0	4	2
17		Literature reading skills	IM	2	0	0	0
		SEMESTER III					
18		Programme Elective-IV	PE	3	0	0	3
19		Programme Elective-V	PE	3	0	0	3
20		Institute Elective	IE	3	0	0	3
21	CS624301	Project Phase - I	EEC	0	0	8	8
		SEMESTER IV					
22	CS624302	Project Phase - II & Journal Publication	EEC	0	0	12	12
23	CS624502	Technical Seminar-II	EEC	2	0	0	1

Sl. No	Subject Code	Subject Name	L	Т	Р	С	Total Periods
		Programme Elective -I [Sem-]	[]				
1	CS624201	Advanced Databases Technologies	3	0	0	3	45
2	CS624202	Web Engineering	3	0	0	3	45
3	CS624203	Artificial Intelligence	3	0	0	3	45
4	CS624204	Service Oriented Architecture	3	0	0	3	45
5	CS624205	Information Storage Management	3	0	0	3	45

Programme Elective -II [Sem-II]

1	CS624206	Internet of Things	3	0	0	3	45
2	CS624207	Big Data Analytics	3	0	0	3	45
3	CS624208	Mobile and Pervasive Computing	3	0	0	3	45
4	CS624209	Software Reliability and Metrics	3	0	0	3	45
5	CS624210	Fuzzy Logic and its Applications	3	0	0	3	45

Programme Elective -III [Sem-II]

		Software Quality Assurance and	3	0	0	3	45
1	CS624211	Testing					
2	CS624212	Cognitive Computing	3	0	0	3	45
3	CS624213	Social Network Analysis	3	0	0	3	45
4	CS624214	Data Mining Techniques	3	0	0	3	45
5	CS624215	Blockchain Technologies	3	0	0	3	45

Programme Elective -IV [Sem-III]

1	CS624216	Agent Based Systems	3	0	0	3	45
2	CS624217	Machine Learning	3	0	0	3	45
3	CS624218	Android Application Development	3	0	0	3	45
4	CS624219	Soft Computing Techniques	3	0	0	3	45
5	CS624220	Bio-informatics	3	0	0	3	45

Programme Elective -V [Sem-III]

		Multimedia and Compression	3	0	0	3	45
1	CS624221	Techniques					
2	CS624222	Data Visualization Techniques	3	0	0	3	45
3	CS624223	Python with R program	3	0	0	3	45
4	CS624224	Formal Model and Software Systems	3	0	0	3	45
5	CS624225	Software Project Management	3	0	0	3	45

Institute Elective

Sl. No	Subject Code	Subject Name	L	Т	Р	С	Total Periods
1	CS624901	Modern Sensor Technology	3	0	0	3	45
		Decision Support and Intelligent	3	0	0	3	45
2	CS624902	Systems					

I SEMESTER

CS624001/ Applied mathematics											
Course Category: Programme	Course Type. Theory	L	Т	Р	C						
Core	0	3									
Unit I – PROBABILITY AND RAI	NDOM VARIABLES		1		9						
Probability - Baye's Theorem and Applications - Discrete and Continuous Random Variables - Discrete Probability Distributions - Binomial, Poisson and Geometric - Continuous Probability Distributions - Uniform, Exponential and Normal											
Unit II – QUEUING MODELS					9						
Poisson Process - Markovian Queue Machine Interference Model - PollaczekKhintchine Formula	es - Single and Multi-Server N Self Service Queue -Non	lodels - Ma	- Little rkoviar	e's Fo n Qu	rmula - eues -						
Unit III – SIMULATION					9						
Discrete Even Simulation - Monte - Queuing systems	Carlo Simulation - Stochastic S	imulati	on – A	pplica	tions to						
Unit IV – LINEAR PROGRAMMI	ING				9						
Formulation - Graphical Solution - S Assignment Problems	implex Method - Two Phase Me	ethod -	Transp	ortatic	on and						
Unit V- NON-LINEAR PROGRAMMING9											
Lagrange Multipliers - Equality Constraints - Inequality Constraints - Kuhn - Tucker conditions - Quadratic Programming.											
TOTAL: 45 PERIODS											

CS624002: Advance Computer Architecture										
Course Category: Programme	Correct Town of The server	L	Т	Р	С					
Core	Course Type: Theory	3	0	0	3					
COURSE OBJECTIVES:										
• To gain knowledge about the fu	indamentals of Computer design	gn.								
• To understand the basics and fe	eatures of ILP with dynamic ap	oproach	es.							
• To provide the knowledge about	it the ILP with software approx	aches.								
• To learn about the Concept of f	eatures of multiprocessors.									
• To understand the concept of M	Iemory organization features.									
Unit 1 FUNDAMENTALS OF COM	IPUTER DESIGN AND PIP	ELINI	NG							
Introduction – Designing for perform	nance-Measuring and Reporti	ing Per	forman	ce -						
Quantitative Principles of Computer D	esign - Instruction Set Princip	les and	Examp	les -						
Classifying Instructions Set Architect	ures - Memory Addressing -	Address	sing Mo	odes	9					
for Signal Processing - Type and Siz	e of Operands – Pipelining -	Basic	Concer	ots -						
Hazards – Implementation.			1							
Unit 2 ILP WITH DYNAMIC APPI	ROACHES									
Concepts and Challenges - Overcom	ing Data Hazards with Dyna	amic S	chedulii	ng -						
Examples - Reducing Branch Costs	with Dynamic Hardware Pre	diction	- Tal	king	0					
Advantages of ILP with Multiple	Issues - Limitations of ILP-	-Exploi	ting IL	Р-	9					
Instruction Delivery and Speculation -	Limitations of ILP - Multithre	eading.	-							
Unit 3 ILP WITH SOFTWARE AP	PROACHES									
Basic Compiler Techniques for Exp	osing ILP - Static Branch H	Predicti	on - S	tatic						
Multiple Issues: VLIW Approach -	Advanced Compiler Support	rt for	Exposir	ng -	9					
Hardware Support - Cross Cutting Issu	es - Intel IA64 Architecture.									
Unit 4 MULTIPROCESSORS AND	MULTICORE ARCHITEC	TURE	S							
Symmetric and Distributed Shared	Memory Architectures - D	Distribu	ted Sha	ared						
Memory and Directory-Based Coherer	nce- Performance Issues - Sync	chroniz	ation Is	sues	0					
- Models of Memory Consistency -	- Software and Hardware M	Iultithre	eading-l	Intel	,					
Multicore Architectures –SUN CMP a	rchitecture – IBM Cell Archite	ecture.								
Unit 5 MEMORY AND I/O										
Introduction - Review of Caches - Cac	che Performance - Reducing C	Cache M	liss Pen	nalty						
- Reducing Miss Rate - Reducing Hit	Time - Optimizations of Cach	he Perfe	ormance	e —						
Design of Memory Hierarchies- Ma	ain Memory and Organizatio	ons for	Improv	ving	9					
Performance Virtual Memory Stora	ge Systems - Types of Storage	e Devic	es - Bus	ses -						
Reliability I/O Performance Measur	es.									
		TC	DTAL:	45 PE	RIODS					
COURSE OUTCOMES: At the end of	f the course, the student will be	able to								
CO1 Gain knowledge about the fund	lamentals of Computer design.									
CO2 Understand the basics and feature	ares of ILP with dynamic approximately a	oaches.								
CO3 Provide the knowledge about the	ne ILP with software approach	es.								
CO4 Learn about the Concept of fea	tures of multiprocessors.									
CO5 Understand the concept of Mer	nory organization features.									

REFERENCE BOOKS:

- 1. John L. Hennessey and David A. Patterson, "Computer Architecture: A Quantitative Approach", Morgan Kaufmann, Fourth Edition, 2006.
- 2. D. Sima, T. Fountain and P. Kacsuk, "Advanced Computer Architectures: A Design Space Approach", Addison Wesley, Seventh Edition, 2009.
- 3. Computer Organization and Architecture, William Stallings ,8th edition, PHI.

CS624003: Advanced Data structures and Algorithms										
Course Cotogony Broomers Cono	Course True of Theorem	L	Т	Р	С					
Course Category: Programme Core	Course Type: Theory	3	0	0	3					
COURSE OBJECTIVES:										
• To understand the usage of algorith	ms in computing									
• To learn and use hierarchical data s	tructures and its operations									
• To learn the usage of graphs and its	applications									
• To select and design data structures	and algorithms that is appr	opriate	for pro	blems						
• To study about NP Completeness of	f problems.	-	-							
Unit 1 Algorithm and Analysis of Alg	gorithm									
Algorithms – Algorithms as a prob	olem solving technique -	Time	and S	pace						
complexity of algorithms- Asymptotic	c analysis-Average and w	/orst-ca	se anal	ysis-	0					
Asymptotic notation-Importance of	efficient algorithms-	Recurre	ences:	The	,					
Substitution Method – The Recursion-T	Free Method- Data structure	es and a	lgorith	ms.						
Unit 2 Hierarchical Datastructures										
Binary Search Trees: Basics – Quer	rying a Binary search tre	e – Ir	isertion	and						
Deletion- Red Black trees: Properties	of Red-Black Trees – Rot	ations –	- Inserti	ion –						
Deletion -B-Trees: Definition of B -tre	es – Basic operations on B	-Trees	– Delet	ing a	9					
key from a B-Tree- Heap – Heap Im	plementation – Fibonacci	Heaps:	structu	ure –						
Mergeable-heap operations- Decreasin	ng a key and deleting a	node-B	ounding	g the						
maximum degree.										
Unit 3 Graphs	antations of Cranha Dra	adth Ei	not Coor	rah						
Dopth First Soarch Strongly Conneg	ted Components Minimu	autii-Fi	rst Seal							
Kruskal and Prim- Single-Source Sh	ortest Paths. The Bellmar	n Spar Ford	algorith	m	0					
Single-Source Shortest paths in Directe	ed Acyclic Graphs – Diiksti	a's Alo	orithm	A11-	,					
Pairs Shortest Paths: The Floyd-Warsh	all Algorithm	u s me	,ormini,	2 111						
Unit 4 Algorithm Design Techniques										
Dynamic Programming: Multi-stage gra	aphs – Flow Shop Scheduli	ng: Gre	edv							
Algorithm: Tree vertex Splitting – Job	sequencing with deadlines:	Backtra	acking:		9					
Graph Coloring – Knapsack Problem	1 0 ,		U							
Unit 5 NP – Complete and NP - Hard	1									
NP-Completeness: Polynomial Time	e – Polynomial-Time V	erificat	ion –	NP-						
Completeness and Reducibility – NP-C	Completeness Proofs – NP-C	Complet	te Probl	ems:	9					
Clique Decision Problem – Traveling S	alesman Problem.									
			TOTA	L: 45 P	ERIO	DS				
COURSE OUTCOMES: At the end of	the course, the student will	be able	to							
CO1 : Design algorithms for various co	mputing problems and ana	lyze the	time a	nd spac	e					
complexity of algorithms.				1						
CO2 : Identify and implement tree data	structures and apply them	to solve	proble	ms.						
CO3 : Identify and implement graph da	ta structures and apply ther	n to sol	ve prob	lems.						
CO4 : Ability to understand and design	algorithms using appropria	te algo:	rithm de	esign te	chniqu	ies				
for the given problem.										

CO5 : Ability to understand role the NP – Complete and NP – Hard Problems in solving real world problems. CO-PO MAPPING

,															
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C	201	3	3	2	2	1	-	-	-	-	-	-	-	3	-
C	202	3	3	3	3	-	-	-	-	-	-	-	-	2	-
C	203	3	3	3	3	-	-	-	-	-	-	-	-	-	2
C	CO4	3	3	3	3	-	-	-	-	-	-	-	-	-	1
C	CO5	3	2	2	2	-	-	-	-	-	-	-	-	-	2
RF	REFERENCE BOOKS:														
1.	1. S.Sridhar, "Design and Analysis of Algorithms", Oxford University Press, 1st Edition, 2014.														
2.	2. Adam Drozdex, "Data Structures and algorithms in C++", Cengage Learning, 4th Edition,														
	2013.														
3.	Ellis	Ho	rowitz	z, Sai	rtajSha	ani, S	Sangu	thevar	Rajase	ekaran	, "Fu	ndamer	ntals (Of Co	mputer
	Algo	orithm	ns". Ind	dia, M	lisc, 20	010.									-
4.	Τ.	H. C	Cormei	n, C.	E. I	Leisers	son,	R.L	. Riv	est, a	and C	. Stei	n, "In	troduct	ion to
	algo	rithm	s", Sec	cond E	dition	, Pren	tice H	all of [India l	Ltd					
5.	Mar	k All	en W	eiss, '	"Data	Struc	tures	and A	Algori	thms	in C++	-", Pea	irson E	ducatio	on, 3rd
	Edit	ion, 2	009												
6.	5. Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, "Data Structures and Algorithms",														
	Pear	son E	ducati	on, Re	eprint,	2006.									

CS62400	4: Cryptography and Hashing	5			
Course Category: Programme			С		
Core	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:					<u> </u>
• To introduce the fundamental conc	epts and techniques in cryptog	graphy a	and netw	vork se	ecurity
• To illustrate the working principles	of various Symmetric Cipher	S.			
• To explore knowledge on Asymme	etric Ciphers.				
• To study system boot and the Init r	process.				
• To learn the various Hash function					
• To realize the Construction.					
Unit 1 INTRODUCTION					
Computer Security Concepts- OSI Se	ecurity Architecture- Security	Attacl	s- Secu	urity	
Services- Security Mechanisms-Mod	el for Network Security-Cl	assical	Encryp	tion	
Techniques- Symmetric Cipher	Model-Substitution Techni	ques-Ti	ansposi	tion	0
Techniques- Rotor Machines- Stegno	graphy- Basic Concepts in N	umber	Theory	and	9
Finite Fields-Divisibility and the Divi	sion Algorithm- Euclidean A	lgorith	n- Mod	ular	
Arithmetic-Groups, Rings, and Fields-	Finite Fields of the Form GF	(p)			
Unit 2 MODERN SYMMETRIC CI	PHERS				
Block Ciphers and the Data Encrypti	ion Standard-Block Cipher P	rinciple	s-The I	Data	
Encryption Standard (DES)- Strength	of DES-Differential and Lin	near Cr	yptanaly	/sis-	0
Block Cipher Design Principles-Advan	nced Encryption StandardBloc	k Ciphe	er Mode	es of	9
Operation- Stream Ciphers-RC4					
Unit 3 ASYMMETRIC CIPHERS					
Prime Numbers- Fermat's and Eule	r's Theorems- Testing for	Primalit	y- Chii	nese	
Remainder Theorem-Discrete Logarit	hms- Principles of Public-K	ey Cry	ptosyste	ems-	9
RSA Algorithm- Diffie-Hellman Ke	y Exchange- ElGamal Cry	otosyste	m- Elli	iptic	-
Curve Arithmetic- Elliptic Curve Cryp	tography				
Unit 4 HASH FUNCTION					
Block cipher Based hash function - N	Non-Block cipher Based hash	functio	on - De	sign	9
principles - Methods of Attack on Has	h function				
Unit 5 CONSTRUCTION					
Theoretic Construction - Hard bit and	Pseudo random bit generation	- strong	g one-wa	ay	9
permutation - UOWHF Construction a	nd PBG -Strong one-way peri	nutatioi	1		
		T	DTAL:	45 PE	RIODS
COURSE OUTCOMES: At the end of	f the course, the student will be	e able to			
CO1 : Apply essential mathematical co	oncepts to Cryptography and i	dentify	the vuln	erabili	ities in
Classical cryptosystems					
CO2 : Experiment Symmetric-Key cip	her algorithms				
CO3 : Apply Asymmetric-Key Crypto	graphic techniques				
CO4 : Manipulate the Hash function					
CO5 : Demonstrate cryptographic Hast	h function to real-time applica	tions			

CO PO MAPPING														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3									3		
CO2	3	3	3		2						3	3	3	
CO3)3 3 3 2 2 3 3 3													
CO4	3	2	3	2							2	2		2
CO5	3	3	3	2	3						2	2		2
REFERENCE BOOKS:														
1. Wil	1. William Stallings, "Cryptography and network Security", Pearson, Sixth edition, 2013.													
2. Ala	n G. K	Lonhei	m, "C	omput	er sec	urity &	& cryp	tograp	ohy", J	lohn W	iley &	Sons, 2	007.	
3. Jose	ef Piep	rzyk E	Babak	Sadeg	hiyan	,"Des	ign of	hashi	ng Alg	goritms	",Sprin	nger-Ve	erlag 19	93
4. Cha	rles P	P. Pfle	eger,	Shari	Lawre	ence I	Pfleeg	er, "S	ecurity	y in co	mputir	ng", Pr	entice]	Hall of
Ind	ia, Thi	rd Edi	tion, 2	2006.			C		•		1			
5. Wa	de Tra	ppe, L	awrer	nce C	Washi	ngton	, "Intr	oducti	on to	Crypto	graphy	with c	oding t	heory",
Pearson, Second edition, 2007														
6. Behrouz A.Forouzan, "Cryptography and Network Security", Tata McGraw Hill, 2010.														
7 W	Mao	"Mo	lern (Crypto	oranh	v _ ′	Theory	v and	Pract	tice"]	Dearson	Educ	ation	Second

7. W. Mao, "Modern Cryptography – Theory and Practice", Pearson Education, Second Edition, 2007

AP620004 -RESEARCH METHODOLOGY										
Course Category: Institutive core	Course Type: Theory	L	Τ	P	C					
Course Category: Institutive core	Course Type. Theory	3	0	0	3					
COURSE OBJECTIVES:										
• Impart knowledge on basics of rese	earch methodology									
• Explore knowledge in technical wr	iting in an efficient manner									
Understand research problem form	ulation and analyses the resea	rch rela	ted info	ormatio	n					
• Understand the importance of IPR										
• Apply the knowledge of IPR in var	rious research projects									
UNIT - I RESEARCH PROCESS										
Research ethics - Research process	s: characteristics and requir	ements,	Туре	s of						
research, Research process: eight	step model - formulating	researc	h prob	lem,						
conceptualizing research design, const	tructing instrument for data c	ollectio	n, Seleo	cting	9					
a sample, writing a research proposal,	collecting data, processing da	ta, writi	ng rese	arch						
report.										
UNIT - II RESEARCH WRITING										
Effective literature studies approaches	- technical document structu	ring - h	ow to v	write						
report and research paper - format of	research proposal - developin	g resear	ch prop	oosal	9					
- presentation and assessment by a revi	iew committee.									
UNIT - III DESIGN OF EXPERIME	INTS									
Strategy of Experimentation - Typical	applications of experimental	design -	Guide	lines						
for designing experiments - Basic	statistical concepts - Stati	istical c	concept	s in	9					
experimentation - Regression approach	n to analysis of variance.									
UNIT - IV INTELLECTUAL PROP	PERTY									
Patents, Industrial designs and IC	layout Designs, Trade Mar	ks and	Copyr	ight,						
Geographical Indications, IPR managed	gement: 5Cs model of mana	ging IP	, Emer	ging	9					
issues in IPR.										
UNIT - V ROADMAP FOR PATEN	NT CREATION									
Types of patent - Parts of a patent doc	cument - Terminologies and c	odes us	ed in p	atent						
document - Patent searching and	analysis – Indicators for	patenta	bility -	- IP	0					
identification tool – public patent data	base - Transfer and infringen	nent of p	oatent r	ights	,					
– Patent commercialization.										
		Т	DTAL:	45 PE	RIODS					
COURSE OUTCOMES: At the end o	f the course, the student will be	e able to								
CO1 : Understand that today's world is	s controlled by Computer, Info	ormation	n Techr	nology,	but					
tomorrow world will be ruled by ideas	, concept, and creativity.									
CO2 : Correlate the results of any research	arch article with other publish	ed resul	ts. Writ	e are v	view					
article in the field of engineering	-									
CO3 : Understand research problem fo	rmulation & Analyze research	n related	inform	nation a	and					
Follow research ethics	-									
CO4 : Appreciate the importance of IP	R and protect their intellectua	l proper	ty.							
CO5 : Understand that PR protection p	rovides an incentive to invent	ors for t	further	researc	h work					
1				-						

and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits

CO PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	1	2	3	1	2		2		1	2		
CO2	2	3	1	3	2	2	2	1			2	2		
CO3	2	2	2	3	3	1	2			1		2		
CO4	3	3	1	1	3	3	2	1	2			2		
CO5	1	1	1	3	3	2	1		1		3	2		

REFERENCE BOOKS:

1. Ranjit Kumar, Research Methodology- A step by step guide for beginners, Pearson Education, Australia, 2005.

2. Ann M. Korner, Guide to Publishing a Scientific paper, Bioscript Press 2004.

3. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

4. Kothari, C. R. Research Methodology - Methods and Techniques, New Age Internationalpublishers, New Delhi, 2004.

5. Robert P. Merges, Peter S. Menell and Mark A. Lemley, "Intellectual Property in New Technological Age", Aspen Publishers, 2016

CS624101: DATA STRUCTURES LABORATORY											
Course Category: Programme	C	Т			_	L	Т	Р	С		
Core	Cou	irse 1	ype: 1	neory	Y I	0	0	4	2		
COURSE OBJECTIVES:											
• To acquire the knowledge of using	adva	nced t	ree str	ucture	s.						
• To learn the usage of heap structure	res.										
• To understand the usage of graph	struct	ures a	nd spa	nning	trees.						
• To learn about Huffman Coding			1	U							
LIST OF EXPERIMENTS:											
1. Implementation of Merge Sort and Quick Sort-Analysis											
2. Implementation of a Binary Search Tree											
3. Red-Black Tree Implementation											
4. Heap Implementation											
5. Fibonacci Heap Implementation											
6. Graph Traversals											
7. Spanning Tree Implementation	l										
8. Shortest Path Algorithms (Dijk	stra's	algori	thm, I	Bellma	ın Ford	Algori	thm)				
9. Implementation of Matrix Chai	in Mu	ltiplic	ation								
10. Activity Selection and Huffman	n Cod	ling In	nplem	entatic	on						
						T	OTAL:	45 PEI	RIODS		
COURSE OUTCOMES: At the end o	f the c	course.	the st	udent	will be	able to					
CO1 : Design and implement basic dat	ta stru	ctures	•								
CO2 : Implement advanced data struct	ures e	extensi	velv								
CO3 : Design algorithms using graph s	struct	ures	<u>j</u>								
CO4 : Design and develop efficient als	orith	ms wi	th min	imum	compl	exity us	sing des	sign			
techniques	5011011	1115 111			compi	enney a	sing ac				
CO5 : Understand and develop Dynam	nic pro	ogram	ming a	algorit	hms.						
CO PO MAPPING	<u>F</u>	8									
PO1 PO2 PO3 PO4 PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1 3 3 3	-	-	-	-	-	-	-	3	-		
<u>CO2</u> <u>3</u> <u>-</u> <u>3</u> <u>-</u> <u>2</u>	-	-	-	-	-	-	-	3	-		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	-	-	-	-	-	-	3	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-	-	-	-	-	-	-	2		
REFERENCE BOOKS									2		
Adam Drozdey "Data Structures and algorithms in C++" Cangage Learning 4th Edition											
2013											
2. Mark Allen Weiss, "Data Struct	ures	and A	Algori	hms	in C+-	-". Pea	rson F	ducatio	on. 3rd		
Edition, 2009						, 100			,		
3. Alfred V. Aho, John E. Hopcroft	leffrey	v D. U	Ilman	. "Date	a Struc	tures a	nd Algo	rithms	,		
Pearson Education, Reprint, 2006		, 2. 0		, _ uti					,		

II SEMESTER

CS624005: Digital Image Processing Tools and Techniques									
Course Category: Programme	Correct Trans Theorem	L	Т	P	С				
Core	Course Type: Theory	3	0	0	3				
COURSE OBJECTIVES:			-						
• To provide the basic knowledge of	of Digital Image Processing.								
• To Know the various ima	ge enhancement techniques.								
• To understand the various	concepts of image segmentat	ion.							
• To Learn about compressi	on techniques.								
• To extract features for image analy	sis and also illustrate 3D imag	ge visua	lization	l					
Unit 1 INTRODUCTION TO	DIGITAL IMAGE PROC	ESSIN	G						
Image Representation and Image Pro	ocessing Paradigm - Elemen	ts of di	gital in	nage					
processing. Sampling and quantization	on-Relationships between pi	xels- C	onnecti	vity,	0				
Distance Measures between pixels -	Color image (overview, vari	ous col	or mod	els)-	9				
Various image formats bmp, jpeg, tiff,	png, gif.								
Unit 2 IMAGE ENHANCEMENT									
Enhancement by point processing,	Sample intensity transform	mation,	Histog	gram					
processing, Image subtraction, Image	averaging, Spatial filtering-	Smootl	ning Sp	atial	9				
filters, Sharpening Spatial filters, Fre	equency domain- Fourier Tra	unsform,	Low-l	Pass,	,				
HighPass, Laplacian, Homomorphic fi	iltering.								
Unit 3 IMAGE SEGMENTATION									
Edge detection, Thresholding, Reg	ion growing, Fuzzy cluste	ering, V	Vater	shed					
algorithm, Active contour models, Te	exture feature based segment	ation, C	braph b	ased	9				
segmentation, Wavelet based Segm	entation-Applications of im	nage se	gmenta	tion.	-				
Region oriented segmentation- Histog	ram based segmentation.								
Unit 4 IMAGE COMPRESSION									
Lossless compression versus lossy	compression-Measures of	the c	ompres	sion					
efficiency- Huf- mann coding-Bitplan	e coding-Shift codes-Block	Truncat	ion coc	ling-	9				
Arithmetic coding-Predictive coding	techniques-Lossy compression	on algo	rithm u	ising					
the 2-D. DCT transform-The JPEG 20	00 standard Baseline lossy JP	EG, bas	ed on L	DWT					
Unit 5 FEATURE EXTRACTION	AND 3D IMAGE VISUALI	ZATIO	N						
Feature extraction: Histogram based fe	eatures - Intensity features-Co	lor, Sha	pe feati	ures-					
Contour extraction and represen	itation-Homogenous region	extra	ction	and					
representation. Sources of 3D Data se	ts, Slicing the Data set, Arbit	rary sec	tion pla	ines,	9				
The use of color, Volumetric displ	lay, Stereo Viewing, Ray t	racing,	Reflec	tion,					
Surfaces, Multiple connected surfaces	, Image processing in 3D, M	easuren	nents or	n 3D					
images									
		T	DTAL:	45 PE	RIODS				
COURSE OUTCOMES: At the end o	f the course, the student will be	e able to							
CO1 : Understand the basic Concepts	of Digital Image Processing a	and its \overline{e}	quivale	nt oper	1				
source tools									

CO2 : Apply different Algorithm by utilizing Enhancement Techniques CO3 : Learn and apply different Segmentation Techniques in an Image Processing

CO4 : E	CO4 : Explore the possibility of applying various Compression Techniques in an Image													
process	processing applications													
CO5 : A	Analyz	e diffe	erent F	Feature	e extra	ction a	approa	ches t	o ima	ge proc	essing	applica	tions	
CO PO	CO PO MAPPING													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3				2							2	2	1
CO2	3	2			2						1	2	2	2
CO3	CO3 2 2 2 2 1 2 2													
CO4	2		2		1						2	2	1	2
CO5	2				2						1	2	2	1
REFER	RENC	E BOO	OKS:											
1.	Rafael	C. Go	onzale	z and	Richa	rd E. V	Woods	, Digi	tal Im	age Pro	cessing	g, Third	Ed.,	
	Prenti	ceHall	, 2008	3				_		-	_	-		
2.	Willia	m K. I	Pratt, l	Digital	l Imag	e Proc	cessing	g, Johr	n Wile	y, 4th I	Edition,	2007		
3.	Anil K	K. Jain,	, Fund	lament	als of	Digita	al Imag	ge Pro	cessin	g, Pren	tice Ha	ull of In	dia, 19	97
4.	Sonka	, Fitzp	atrick	, Med	ical In	nage P	rocess	sing ar	nd Ana	alysis, 1	lst Edit	ion, SP	IE,200	0

CS624006: N	etwork Design and Technol	ogies			
Course Category: Programme	Course Tuper Theory	L	Т	Р	С
Core	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:					
• To understand the principles requir	ed for network design				
• To explore various technologies in	the wireless domain				
• To understand the various protocol	s of wireless and cellular netw	vorks			
• To study about 4G and 5G cellular	networks				
• To understand the paradigm of Sof	tware defined networks				
Unit I Network Design					
Advanced multiplexing - Code Divisi	on Multiplexing, DWDM an	d OFDN	∧I – Sh	ared	
media networks - Switched network	ks - End to end semantics	– Con	nection	less,	
Connection oriented, Wireless Scenar	rios – Applications, Quality o	f Servic	e – En	nd to	0
end level and network level solutions	. LAN cabling topologies –	Etherne	et Swite	ches,	,
Routers, Firewalls and L3 switches	- Remote Access Technolog	gies and	Devic	es –	
Modems and DSLs – SLIP and PPP –	Core networks, and distribution	on netwo	orks.		
Unit II Wireless Networks					
IEEE802.16 and WIMAX – Security	v - Advanced 802.16 Funct	ionalitie	s – Mo	obile	
WiMAX - 802.16e – Network Infrastr	ucture – WLAN – Configura	tion - N	lanagei	ment	9
Uperation – Security – IEEE 802.11e	and $WMM = QoS = Compar$	ison of	WLAN	and	
UMIS – Bluetooth – Protocol Stack –	Security – Promes				
CSM Mobility Management and ca	ll control GPPS Network	z Flomo	nte D	adio	
Resource Management – Mobility M	Janagement and Session Ma	nageme	ms - K	mall	
Screen Web Browsing over GPRS and	EDGE – MMS over GPRS	– UMT9	S = Cha	nnel	9
Structure on the Air Interface – I	JTRAN –Core and Radio	Networ	k Moł	nilit v	,
Management – UMTS Security		1.00000	II 10100	Jiney	
Unit IV 4G Networks					
LTE – Network Architecture and Inter	faces – FDD Air Interface and	d Radio	Networ	rks –	
Scheduling – Mobility Managemen	and Power Optimization	– LT	E Sec	urity	
Architecture – Interconnection with	UMTS and GSM – LTE	Advanc	ed (3G	PPP	0
Release 10) - 4G Networks and Comp	oosite Radio Environment – I	Protocol	Booste	ers –	9
Hybrid 4G Wireless Networks Protoco	ols – Green Wireless Network	ks – Phy	sical L	ayer	
and Multiple Access – Channel Model	ling for 4G – Introduction to :	5G			
Unit V Software Defined Networks					
Introduction – Centralized and Distri	buted Control and Data Plar	$\log - O_{j}$	pen Flo	₩ -	
SDN Controllers – General Concepts	– VLANs – NVGRE – Ope	en Flow	– Netv	work	9
Overlays – Types – Virtualization – Da	ata Plane – I/O – Design of Sl	DN Fran	nework	-	
		T	DTAL:	45 PE	RIODS
COUDSE OUTCOMES. At the and o	f the course the student will be	a obla ta			

COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Identify the components required for designing a network CO2 : Design a network at a high-level using different networking technologies

CO3 : A	Analys	e the v	various	s proto	ocols c	of wire	eless a	nd cel	lular n	etwork	S			
CO4 : I	CO4 : Discuss the features of 4G and 5G networks													
CO5 : I	Experii	ment v	vith sc	oftware	e defir	ned ne	tworks	5						
CO PO	MAP	PING												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		2									3		
CO2	3	2	3			2					2	3	2	
C03	3	2	2			2						<u> </u>	3	
CO4	2		2									3	5	2
REFERENCE BOOKS:														
1.	Erik D	ahlma	n. Ste	fan Pa	arkvall	. Joha	n Sko	ld. —4	4G: L7	FE/LTF	E-Adva	nced fo	r Mobi	le
	Broad	band.	Acad	emic I	Press.	2013		,						
2.	Jonath	an Ro	drigue	ez, —ł	Fundar	nental	ls of 5	G Mol	bile No	etwork	sI, Wile	ey, 2013	5.	
3.	Larrv	Peters	son ar	d Bru	ice Da	avie	-Con	nputer	Netw	orks:	A Syste	ems At	proach	. 6 th
	editior	n, Mor	gan K	auffm	an, 20	21		1			2	1	1	,
4.	Martir	Saut	er, "F	rom C	GSM t	o LTI	E, An	Introc	luctior	n to M	obile N	letwork	s and	Mobile
	Broad	band",	Wile	y, 201	4		,							
5.	Martir	n Saut	er, —	Beyor	nd 3G	- Bri	nging	Netw	orks,	Termin	als and	d the V	Veb To	gether:
	LTE, Y	WiMA	X, IN	1S, 4G	b Devi	ces an	d the l	Mobile	e Web	2.0I, V	Viley, 2	009		C
6.	Navee	n Chi	lamku	rti, Sl	nerali	Zeada	lly, H	akima	Chao	uchi, -	-Next	-Genera	ation W	/ireless
	Techn	ologie	s∥, Spi	ringer.	2013		J ,			,				
7.	Paul	Goran	sson,	Chuc	k Bla	ıck, -	-Soft	ware	Defin	ed Ne	tworks	: A C	omprel	nensive
	Appro	achl, I	Morga	n Kau	ffman	, 2014	Ļ						*	
8.	Savo (G Glis	ic, —	Advan	ced W	/ireles	s Netv	vorks	– 4G ′	Techno	logies	, John V	Wiley &	& Sons,
	2007										C	e	5	,
L														

Course Category: Programme Core Course Type: Theory L T P C COURSE OBJECTIVES:	CS624007: (Cloud Computing Technolog	gies			
Course Type: Theory 3 0 0 3 COURSE OBJECTIVES:	Course Category: Programme	Correct Trees Theorem	L	Т	Р	С
COURSE OBJECTIVES: • To understand the concept of cloud and utility computing. • To understand the various issues in cloud computing. • To familiarize themselves with the lead players in cloud. • To appreciate the emergence of cloud as the next generation computing paradigm. • To be able to set up a private cloud. Unit 1 INTRODUCTION Introduction - Historical Development - Cloud Computing Architecture – The Cloud Reference Model – Cloud Characteristics – Cloud Deployment Models: Public, Private, Community, and Hybrid Clouds - Cloud Delivery Models: IaaS, PaaS, SaaS – Open Source Private Cloud Software: Eucalyptus, Open Nebula, Open Stack Unit 2 VIRTUALIZATION Data Center Technology - Virtualization - Characteristics of Virtualization - Tools and Mechanisms: Xen, VMWare, Microsoft Hyper-V Unit 3 CLOUD COMPUTING MECHANISM Cloud Infrastructure Mechanism: Cloud Storage, Cloud Usage Monitor, Resource Replication – Specialized Cloud Mechanism: Load Balancer, SLA Monitor, Pay-peruse Monitor, Audit Monitor, Failover System, Hypervisor, Resource Cluster, Multi Device Broker, State Management Database – Cloud Management Mechanism: Remote Administration System, Resource Management System, SLA Management System, Billing Management System Unit 4 HADOOP AND MAP REDUCE Apache Hadoop – Hadoop Map Reduce – Hadoop Distributed File System- Hadoop I/O Developing a Map Reduce Application - Map Reduce Types and Formats - Map Reduce Features- Hadoop Cluster Setup – Administering Hadoop 9 Basic Terms and Concec	Core	Course Type: Theory	3	0	0	3
 To understand the concept of cloud and utility computing. To understand the various issues in cloud computing. To familiarize themselves with the lead players in cloud. To appreciate the emergence of cloud as the next generation computing paradigm. To be able to set up a private cloud. Unit 1 INTRODUCTION Introduction - Historical Development - Cloud Computing Architecture - The Cloud Reference Model - Cloud Characteristics - Cloud Deployment Models: Public, Private, Community, and Hybrid Clouds - Cloud Delivery Models: IaaS, PaaS, SaaS - Open Source Private Cloud Software: Eucalyptus, Open Nebula, Open Stack Unit 2 VIRTUALIZATION Data Center Technology - Virtualization - Characteristics of Virtualization - Tools and Mechanisms: Xen, VMWare, Microsoft Hyper-V Unit 3 CLOUD COMPUTING MECHANISM Cloud Infrastructure Mechanism: Cloud Storage, Cloud Usage Monitor, Resource Replication - Specialized Cloud Mechanism: Load Balancer, SLA Monitor, Pay-peruse Monitor, Audit Monitor, Failover System, Hypervisor, Resource Cluster, Multi Device Broker, State Management Database - Cloud Management Mechanism: Remote Administration System, Resource Management System, SLA Management System, Billing Maagement Database - Cloud Security Threats - Map Reduce Features - Hadoop Cluster Setup - Administering Hadoop Unit 3 ECURITY IN THE CLOUD Basic Terms and Concepts - Threat Agents - Cloud Security Threats - Cloud Security Groups, Hardened Virtual Server Images GURRSE OUTCOMES: At the end of the course, the student will be able to CO2 : Identify the architecture, infrastructure and delivery models of cloud computing CO2 : Identify the architecture, infrastructure and delivery models of cloud computing	COURSE OBJECTIVES:		•			
 To understand the various issues in cloud computing. To familiarize themselves with the lead players in cloud. To appreciate the emergence of cloud as the next generation computing paradigm. To be able to set up a private cloud. Unit 1 INTRODUCTION Introduction - Historical Development - Cloud Computing Architecture – The Cloud Reference Model – Cloud Characteristics – Cloud Deployment Models: Public, Private, Community, and Hybrid Clouds - Cloud Delivery Models: IaaS, PaaS, SaaS – Open Source Private Cloud Software: Eucalyptus, Open Nebula, Open Stack Unit 2 VIRTUALIZATION Data Center Technology - Virtualization - Characteristics of Virtualized Environments - Taxonomy of Virtualization Techniques – Virtualization and Cloud Computing - Pros and Cons of Virtualization - Implementation Levels of Virtualization - Tools and Mechanisms: Xen, VMWare, Microsoft Hyper-V Unit 3 CLOUD COMPUTING MECHANISM Cloud Infrastructure Mechanism: Cloud Storage, Cloud Usage Monitor, Resource Replication – Specialized Cloud Mechanism: Load Balancer, SLA Monitor, Pay-peruse Monitor, Audit Monitor, Failover System, Hypervisor, Resource Cluster, Multi Device Broker, State Management Database – Cloud Management Mechanism: Remote Administration System, Resource Management System, SLA Management System Unit 4 HADOOP AND MAP REDUCE Apache Hadoop – Hadoop Map Reduce – Hadoop Distributed File System- Hadoop I/O Developing a Map Reduce Application - Map Reduce Types and Formats - Map Reduce Fatures-Hadoop Cluster Setup – Administering Hadoop 9 Reduce Features-Hadoop Cluster Setup – Administering Hadoop 10 Total: 45 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing 9 Identify the architecture, infrastr	• To understand the concept of c	loud and utility computing.				
 To familiarize themselves with the lead players in cloud. To appreciate the emergence of cloud as the next generation computing paradigm. To be able to set up a private cloud. Unit 1 NTRODUCTION Introduction - Historical Development - Cloud Computing Architecture – The Cloud Reference Model – Cloud Characteristics – Cloud Deployment Models: Public, Private, Community, and Hybrid Clouds - Cloud Delivery Models: IaaS, PaaS, SaaS – Open Source Private Cloud Software: Eucalyptus, Open Nebula, Open Stack Unit 2 VIRTUALIZATION Data Center Technology - Virtualization - Characteristics of Virtualized Environments - Taxonomy of Virtualization Techniques – Virtualization and Cloud Computing – Pros and Cons of Virtualization - Implementation Levels of Virtualization - Tools and Mechanism: Xen, VMWare, Microsoft Hyper-V Unit 3 CLOUD COMPUTING MECHANISM Cloud Infrastructure Mechanism: Cloud Storage, Cloud Usage Monitor, Resource Replication – Specialized Cloud Mechanism: Cloud Management Mechanism: Remote Administration System, Resource Management System, SLA Management System, SLA Management System, Sulling Management System Resource Types and Formats - Map Reduce Paphication - Map Reduce Types and Formats - Map Reduce Retures- Hadoop Cluster Setup – Administering Hadoop Unit 5 SECURITY IN THE CLOUD Basic Terms and Concepts – Threat Agents – Cloud Scurity Threats – Cloud Security Mechanism: Encrybion, Hashing, Digital Signature, Public Key Infrastructure, Heating Hadoop Cluster Setup – Administering Hadoop Unit 5 SECURITY IN THE CLOUD Basic Terms and Concepts – Threat Agents – Cloud Security Threats – Cloud Security Mechanism: Encrybion, Hashing, Digital Signature, Public Key Infrastructure, Hadenti Virtual Server Images COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key t	• To understand the various issue	es in cloud computing.				
To appreciate the emergence of cloud as the next generation computing paradigm. To be able to set up a private cloud. Unit 1 INTRODUCTION Introduction - Historical Development - Cloud Computing Architecture - The Cloud Reference Model - Cloud Characteristics - Cloud Deployment Models: Public, Private, Community, and Hybrid Clouds - Cloud Delivery Models: IaaS, PaaS, SaaS - Open Source Private Cloud Software: Eucalyptus, Open Nebula, Open Stack Unit 2 VIRTUALIZATION Data Center Technology - Virtualization - Characteristics of Virtualized Environments - Taxonomy of Virtualization Techniques - Virtualization and Cloud Computing - Pros and Cons of Virtualization - Implementation Levels of Virtualization - Tools and Mechanisms: Xen, VMWare, Microsoft Hyper-V Unit 3 CLOUD COMPUTING MECHANISM Cloud Infrastructure Mechanism: Cloud Storage, Cloud Usage Monitor, Resource Replication - Specialized Cloud Mechanism: Load Balancer, SLA Monitor, Pay-per- use Monitor, Audit Monitor, Failover System, Hypervisor, Resource Cluster, Multi Device Broker, State Management Database - Cloud Management Mechanism: Remote Administration System, Resource Management System, SLA Management System, Billing Management System Unit 4 HADOOP AND MAP REDUCE Apache Hadoop - Hadoop Map Reduce - Hadoop Distributed File System- Hadoop I/O Developing a Map Reduce Application - Map Reduce Types and Formats - Map Reduce Features- Hadoop Cluster Setup - Administering Hadoop Unit 5 SECURITY IN THE CLOUD Basic Terms and Concepts - Threat Agents - Cloud Security Threats - Cloud Security Mechanism: Encryption, Hashing, Digital Signature, Public Key Infrastructure, Identity and Access Management, Single Sign-on, Cloud Based Security Groups, Hardened Virtual Server Images COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing CO2 : Identify the architecture, infrastructure and delivery models of cloud computing	• To familiarize themselves with	the lead players in cloud.				
To be able to set up a private cloud. Unit 1 INTRODUCTION Introduction - Historical Development - Cloud Computing Architecture – The Cloud Reference Model – Cloud Characteristics – Cloud Deployment Models: Public, Private, Community, and Hybrid Clouds - Cloud Delivery Models: IaaS, PaaS, SaaS – Open Source Private Cloud Software: Eucalyptus, Open Nebula, Open Stack Unit 2 VIRTUALIZATION Data Center Technology - Virtualization - Characteristics of Virtualized Environments - Taxonomy of Virtualization Techniques – Virtualization and Cloud Computing – Pros and Cons of Virtualization Techniques – Virtualization - Tools and Mechanisms: Xen, VMWare, Microsoft Hyper-V Unit 3 CLOUD COMPUTING MECHANISM Cloud Infrastructure Mechanism: Cloud Storage, Cloud Usage Monitor, Resource Replication – Specialized Cloud Mechanism: Load Balancer, SLA Monitor, Pay-per- use Monitor, Audit Monitor, Failover System, Hypervisor, Resource Cluster, Multi Device Broker, State Management Database – Cloud Management Mechanism: Remote Administration System, Resource Management System, SLA Management System, Billing Management System Unit 4 HADOOP AND MAP REDUCE Apache Hadoop – Hadoop Map Reduce – Hadoop Distributed File System- Hadoop I/O Developing a Map Reduce Application - Map Reduce Types and Formats - Map Reduce Features – Hadoop Cluster Setup – Administering Hadoop Unit 5 SECURITY IN THE CLOUD Basic Terms and Concepts – Threat Agents – Cloud Security Threats – Cloud Security Mechanism: Encryption, Hashing, Digital Signature, Public Key Infrastructure, Identity and Access Management, Single Sign-on, Cloud Based Security Groups, Hardened Virtual Server Images FUTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to COO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing CO2 : Identify the architecture, infrastructure and delivery models of cloud computing CO2 : Identify the architecture, infrastructure and delivery models of cloud computing	• To appreciate the emergence of	f cloud as the next generation	comput	ing para	adigm.	
Unit 1 INTRODUCTION Introduction - Historical Development - Cloud Computing Architecture – The Cloud Reference Model – Cloud Characteristics – Cloud Delivery Models: IaaS, PaaS, SaaS – Open Source Private Cloud Software: Eucalyptus, Open Nebula, Open Stack 9 Unit 2 VIRTUALIZATION Data Center Technology - Virtualization - Characteristics of Virtualized Environments - Taxonomy of Virtualization Techniques – Virtualization and Cloud Computing – Pros and Cons of Virtualization - Implementation Levels of Virtualization - Tools and Mechanisms: Xen, VMWare, Microsoft Hyper-V 9 Unit 3 CLOUD COMPUTING MECHANISM 10uit fastructure Mechanism: Cloud Storage, Cloud Usage Monitor, Resource Replication – Specialized Cloud Mechanism: Load Balancer, SLA Monitor, Pay-per- use Monitor, Audit Monitor, Failover System, Hypervisor, Resource Cluster, Multi Device Broker, State Management Database – Cloud Management Mechanism: Remote Administration System, Resource Management System, SLA Management System, Billing Management System 9 Unit 4 HADOOP AND MAP REDUCE Apache Hadoop – Hadoop Map Reduce – Hadoop Distributed File System- Hadoop I/O Developing a Map Reduce Application - Map Reduce Types and Formats - Map Reduce Features– Hadoop Cluster Setup – Administering Hadoop 9 Basic Terms and Concepts – Threat Agents – Cloud Security Threats – Cloud Security Mechanism: Encryption, Hashing, Digital Signature, Public Key Infrastructure, Identity and Access Management, Single Sign-on, Cloud Based Security Groups, Hardened Virtual Server Images 9 COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key technologies, strengths and limitations of	• To be able to set up a private cl	loud.	1	01	U	
Introduction - Historical Development - Cloud Computing Architecture – The Cloud Reference Model – Cloud Characteristics – Cloud Delivery Models: Public, Private, Community, and Hybrid Clouds - Cloud Delivery Models: IaaS, PaaS, SaaS – Open Source Private Cloud Software: Eucalyptus, Open Nebula, Open Stack 9 Unit 2 VIRTUALIZATION Data Center Technology - Virtualization - Characteristics of Virtualized Environments - Taxonomy of Virtualization - Implementation Levels of Virtualization - Tools and Mechanisms: Xen, VMWare, Microsoft Hyper-V 9 Unit 3 CLOUD COMPUTING MECHANISM Cloud Infrastructure Mechanism: Cloud Storage, Cloud Usage Monitor, Resource Replication – Specialized Cloud Mechanism: Load Balancer, SLA Monitor, Pay-per- use Monitor, Audit Monitor, Failover System, Hypervisor, Resource Cluster, Multi Device Broker, State Management Database – Cloud Management Mechanism: Remote Administration System 9 Unit 4 HADOOP AND MAP REDUCE Apache Hadoop – Hadoop Map Reduce – Hadoop Distributed File System- Hadoop I/O Developing a Map Reduce Application - Map Reduce Types and Formats - Map Reduce Features- Hadoop Cluster Setup – Administering Hadoop Unit 5 SECURITY IN THE CLOUD 9 Basic Terms and Concepts – Threat Agents – Cloud Security Threats – Cloud Security Mechanism: Encryption, Hashing, Digital Signature, Public Key Infrastructure, Identity and Access Management, Single Sign-on, Cloud Based Security Groups, Hardened Virtual Server Images 9 COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing 9	Unit 1 INTRODUCTION					
Reference Model – Cloud Characteristics – Cloud Deployment Models: Public, Private, Community, and Hybrid Clouds - Cloud Delivery Models: IaaS, PaaS, SaaS – Open Source Private Cloud Software: Eucalyptus, Open Nebula, Open Stack 9 Unit 2 VIRTUALIZATION Data Center Technology - Virtualization - Characteristics of Virtualized Environments - Taxonomy of Virtualization Techniques – Virtualization and Cloud Computing – Pros and Cons of Virtualization - Implementation Levels of Virtualization - Tools and Mechanisms: Xen, VMWare, Microsoft Hyper-V 9 Unit 3 CLOUD COMPUTING MECHANISM Cloud Infrastructure Mechanism: Cloud Storage, Cloud Usage Monitor, Resource Replication – Specialized Cloud Mechanism: Load Balancer, SLA Monitor, Pay-per- use Monitor, Audit Monitor, Failover System, Hypervisor, Resource Cluster, Multi Device Broker, State Management Database – Cloud Management Mechanism: Remote Administration System, Resource Management System, SLA Management System, Billing Management System 9 Unit 4 HADOOP AND MAP REDUCE 9 Apache Hadoop – Hadoop Map Reduce – Hadoop Distributed File System- Hadoop I/O Developing a Map Reduce Application - Map Reduce Types and Formats - Map Reduce Features – Hadoop Cluster Setup – Administering Hadoop 9 Unit 5 SECURITY IN THE CLOUD Basic Terms and Concepts – Threat Agents – Cloud Security Threats – Cloud Security Mechanism: Encryption, Hashing, Digital Signature, Public Key Infrastructure, Identity and Access Management, Single Sign-on, Cloud Based Security Groups, Hardened Virtual Server Images 9 COURSE OUTCOMES: At the end of the course, th	Introduction - Historical Developmen	t - Cloud Computing Archite	ecture –	The C	loud	
Private, Community, and Hybrid Clouds - Cloud Delivery Models: IaaS, PaaS, SaaS - 9 Open Source Private Cloud Software: Eucalyptus, Open Nebula, Open Stack 9 Unit 2 VIRTUALIZATION 9 Data Center Technology - Virtualization - Characteristics of Virtualized Environments 9 Taxonomy of Virtualization - Implementation Levels of Virtualization - Tools and Mechanisms: Xen, VMWare, Microsoft Hyper-V 9 Unit 3 CLOUD COMPUTING MECHANISM 9 Cloud Infrastructure Mechanism: Cloud Storage, Cloud Usage Monitor, Resource Replication - Specialized Cloud Mechanism: Load Balancer, SLA Monitor, Pay-peruse Monitor, Audit Monitor, Failover System, Hypervisor, Resource Cluster, Multi Device Broker, State Management Database - Cloud Management Mechanism: Remote Administration System, Resource Management System, SLA Management System, Billing Management System 9 Virtual 5 SECURITY IN THE CLOUD 9 Basic Terms and Concepts - Threat Agents - Cloud Security Threats - Cloud Security Mechanism: Encryption, Hashing, Digital Signature, Public Key Infrastructure, Identity and Access Management, Single Sign-on, Cloud Based Security Groups, Hardened Virtual Server Images 9 COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing CO2 : Identify the architecture, infrastructure and delivery models of cloud computing	Reference Model – Cloud Characte	eristics – Cloud Deployment	nt Mod	els: Pu	blic,	0
Open Source Private Cloud Software: Eucalyptus, Open Nebula, Open Stack Unit 2 VIRTUALIZATION Data Center Technology - Virtualization - Characteristics of Virtualized Environments Taxonomy of Virtualization - Implementation Levels of Virtualization - Tools and Mechanisms: Xen, VMWare, Microsoft Hyper-V Unit 3 CLOUD COMPUTING MECHANISM Cloud Infrastructure Mechanism: Cloud Storage, Cloud Usage Monitor, Resource Replication – Specialized Cloud Mechanism: Load Balancer, SLA Monitor, Pay-peruse Monitor, Audit Monitor, Failover System, Hypervisor, Resource Cluster, Multi Device Broker, State Management Database – Cloud Management Mechanism: Remote Administration System, Resource Management System, SLA Management System, Billing Management System Unit 4 HADOOP AND MAP REDUCE Apache Hadoop – Hadoop Map Reduce – Hadoop Distributed File System- Hadoop I/O Developing a Map Reduce Application - Map Reduce Types and Formats - Map Reduce Features – Hadoop Cluster Setup – Administering Hadoop Unit 5 SECURITY IN THE CLOUD Basic Terms and Concepts – Threat Agents – Cloud Security Threats – Cloud Security Mechanism: Encryption, Hashing, Digital Signature, Public Key Infrastructure, Identity and Access Management, Single Sign-on, Cloud Based Security Groups, Hardened Virtual Server Images 9 COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing 0 CO2 : Identify the architecture, infrastructure and delivery models of cloud computing CO2 0	Private, Community, and Hybrid Clou	ds - Cloud Delivery Models:	IaaS, P	aaS, Sa	aS –	9
Unit 2 VIRTUALIZATION 9 Data Center Technology - Virtualization - Characteristics of Virtualized Environments 9 Taxonomy of Virtualization Techniques - Virtualization and Cloud Computing - Pros and Cons of Virtualization - Implementation Levels of Virtualization - Tools and Mechanisms: Xen, VMWare, Microsoft Hyper-V 9 Unit 3 CLOUD COMPUTING MECHANISM Cloud Infrastructure Mechanism: Cloud Storage, Cloud Usage Monitor, Resource Replication - Specialized Cloud Mechanism: Load Balancer, SLA Monitor, Pay-per- use Monitor, Audit Monitor, Failover System, Hypervisor, Resource Cluster, Multi Device Broker, State Management Database - Cloud Management Mechanism: Remote Administration System, Resource Management System, SLA Management System, Billing Management System 9 Unit 4 HADOOP AND MAP REDUCE Apache Hadoop - Hadoop Map Reduce - Hadoop Distributed File System- Hadoop I/O Developing a Map Reduce Application - Map Reduce Types and Formats - Map Reduce Features- Hadoop Cluster Setup - Administering Hadoop Unit 5 SECURITY IN THE CLOUD Basic Terms and Concepts - Threat Agents - Cloud Security Threats - Cloud Security Mechanism: Encryption, Hashing, Digital Signature, Public Key Infrastructure, Identity and Access Management, Single Sign-on, Cloud Based Security Groups, Hardened Virtual Server Images 9 COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing 9 CO2 : Identify the architecture, infrastructure and delivery models of cloud computing 9	Open Source Private Cloud Software:	Eucalyptus, Open Nebula, Op	en Stacl	ζ.		
Data Center Technology - Virtualization - Characteristics of Virtualized Environments 9 Taxonomy of Virtualization Techniques – Virtualization and Cloud Computing – 9 Pros and Cons of Virtualization - Implementation Levels of Virtualization - Tools and Mechanisms: Xen, VMWare, Microsoft Hyper-V 9 Unit 3 CLOUD COMPUTING MECHANISM 9 Cloud Infrastructure Mechanism: Cloud Storage, Cloud Usage Monitor, Resource Replication - Specialized Cloud Mechanism: Load Balancer, SLA Monitor, Pay-per-use Monitor, Audit Monitor, Failover System, Hypervisor, Resource Cluster, Multi Device Broker, State Management Database – Cloud Management Mechanism: Remote Administration System, Resource Management System, SLA Management System, Billing Management System 9 Unit 4 HADOOP AND MAP REDUCE 9 Apache Hadoop – Hadoop Map Reduce – Hadoop Distributed File System- Hadoop I/O Developing a Map Reduce Application - Map Reduce Types and Formats - Map Reduce Features- Hadoop Cluster Setup – Administering Hadoop 9 Unit 5 SECURITY IN THE CLOUD 9 Basic Terms and Concepts – Threat Agents – Cloud Security Threats – Cloud Security Mechanism: Encryption, Hashing, Digital Signature, Public Key Infrastructure, Identity and Access Management, Single Sign-on, Cloud Based Security Groups, Hardened Virtual Server Images 9 COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing CO	Unit 2 VIRTUALIZATION	•••••			•	
- Taxonomy of Virtualization Techniques – Virtualization and Cloud Computing – 9 Pros and Cons of Virtualization - Implementation Levels of Virtualization - Tools and 9 Unit 3 CLOUD COMPUTING MECHANISM 9 Cloud Infrastructure Mechanism: Cloud Storage, Cloud Usage Monitor, Resource 9 Replication – Specialized Cloud Mechanism: Load Balancer, SLA Monitor, Pay-peruse Monitor, Audit Monitor, Failover System, Hypervisor, Resource Cluster, Multi 9 Device Broker, State Management Database – Cloud Management Mechanism: 9 Unit 4 HADOOP AND MAP REDUCE 9 Apache Hadoop – Hadoop Map Reduce – Hadoop Distributed File System- Hadoop 9 VO Developing a Map Reduce Application - Map Reduce Types and Formats - Map 9 Reduce Features- Hadoop Cluster Setup – Administering Hadoop 9 Unit 5 SECURITY IN THE CLOUD 9 Basic Terms and Concepts – Threat Agents – Cloud Security Threats – Cloud Security Mechanism: Encryption, Hashing, Digital Signature, Public Key Infrastructure, Identity and Access Management, Single Sign-on, Cloud Based Security Groups, Hardened Virtual Server Images 9 COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing 10002 CO2 : Identify the architecture, infrastructure and delivery models of cloud computing </td <td>Data Center Technology - Virtualizati</td> <td>on - Characteristics of Virtual</td> <td>lized Er</td> <td>vironm</td> <th>nents</th> <td></td>	Data Center Technology - Virtualizati	on - Characteristics of Virtual	lized Er	vironm	nents	
Pros and Cons of Virtualization - Implementation Levels of Virtualization - Tools and Mechanisms: Xen, VMWare, Microsoft Hyper-V Implementation - Tools and Mechanism: Cloud COMPUTING MECHANISM Cloud Infrastructure Mechanism: Cloud Storage, Cloud Usage Monitor, Resource Replication - Specialized Cloud Mechanism: Load Balancer, SLA Monitor, Pay-per- use Monitor, Audit Monitor, Failover System, Hypervisor, Resource Cluster, Multi Device Broker, State Management Database - Cloud Management Mechanism: Remote Administration System, Resource Management System, SLA Management System, Billing Management System 9 Unit 4 HADOOP AND MAP REDUCE Apache Hadoop - Hadoop Map Reduce - Hadoop Distributed File System- Hadoop I/O Developing a Map Reduce Application - Map Reduce Types and Formats - Map 	- Taxonomy of Virtualization Techni	iques - Virtualization and C	loud C	omputi	ng –	0
Mechanisms: Xen, VMWare, Microsoft Hyper-V Unit 3 CLOUD COMPUTING MECHANISM Cloud Infrastructure Mechanism: Cloud Storage, Cloud Usage Monitor, Resource Replication – Specialized Cloud Mechanism: Load Balancer, SLA Monitor, Pay-per- use Monitor, Audit Monitor, Failover System, Hypervisor, Resource Cluster, Multi Device Broker, State Management Database – Cloud Management Mechanism: Remote Administration System, Resource Management System, SLA Management System, Billing Management System Unit 4 HADOOP AND MAP REDUCE Apache Hadoop – Hadoop Map Reduce – Hadoop Distributed File System- Hadoop I/O Developing a Map Reduce Application - Map Reduce Types and Formats - Map Reduce Features- Hadoop Cluster Setup – Administering Hadoop Unit 5 SECURITY IN THE CLOUD Basic Terms and Concepts – Threat Agents – Cloud Security Threats – Cloud Security Mechanism: Encryption, Hashing, Digital Signature, Public Key Infrastructure, Identity and Access Management, Single Sign-on, Cloud Based Security Groups, Hardened Virtual Server Images TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing CO2 : Identify the architecture, infrastructure and delivery models of cloud computing	Pros and Cons of Virtualization - Imp	lementation Levels of Virtual	ization	- Tools	and	9
Unit 3 CLOUD COMPUTING MECHANISM Cloud Infrastructure Mechanism: Cloud Storage, Cloud Usage Monitor, Resource Replication – Specialized Cloud Mechanism: Load Balancer, SLA Monitor, Pay-per- use Monitor, Audit Monitor, Failover System, Hypervisor, Resource Cluster, Multi Device Broker, State Management Database – Cloud Management Mechanism: Remote Administration System, Resource Management System, SLA Management System, Billing Management System Unit 4 HADOOP AND MAP REDUCE Apache Hadoop – Hadoop Map Reduce – Hadoop Distributed File System- Hadoop I/O Developing a Map Reduce Application - Map Reduce Types and Formats - Map Reduce Features- Hadoop Cluster Setup – Administering Hadoop Unit 5 SECURITY IN THE CLOUD Basic Terms and Concepts – Threat Agents – Cloud Security Threats – Cloud Security Mechanism: Encryption, Hashing, Digital Signature, Public Key Infrastructure, Identity and Access Management, Single Sign-on, Cloud Based Security Groups, Hardened Virtual Server Images TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing CO2 : Identify the architecture, infrastructure and delivery models of cloud computing	Mechanisms: Xen, VMWare, Microso	ft Hyper-V				
Cloud Infrastructure Mechanism: Cloud Storage, Cloud Usage Monitor, Resource Replication – Specialized Cloud Mechanism: Load Balancer, SLA Monitor, Pay-per-use Monitor, Audit Monitor, Failover System, Hypervisor, Resource Cluster, Multi Device Broker, State Management Database – Cloud Management Mechanism: Remote Administration System, Resource Management System, SLA Management System, Billing Management System 9 Unit 4 HADOOP AND MAP REDUCE Apache Hadoop – Hadoop Map Reduce – Hadoop Distributed File System- Hadoop I/O Developing a Map Reduce Application - Map Reduce Types and Formats - Map Reduce Features – Hadoop Cluster Setup – Administering Hadoop 9 Unit 5 SECURITY IN THE CLOUD Basic Terms and Concepts – Threat Agents – Cloud Security Threats – Cloud Security Mechanism: Encryption, Hashing, Digital Signature, Public Key Infrastructure, Identity and Access Management, Single Sign-on, Cloud Based Security Groups, Hardened Virtual Server Images 9 COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing CO2 : Identify the architecture, infrastructure and delivery models of cloud computing Even the file Section of the course of the course of the strengths and limitations of cloud computing	Unit 3 CLOUD COMPUTING MECH	HANISM				
Replication – Specialized Cloud Mechanism: Load Balancer, SLA Monitor, Pay-per- use Monitor, Audit Monitor, Failover System, Hypervisor, Resource Cluster, Multi Device Broker, State Management Database – Cloud Management Mechanism: Remote Administration System, Resource Management System, SLA Management System, Billing Management System 9 Unit 4 HADOOP AND MAP REDUCE Apache Hadoop – Hadoop Map Reduce – Hadoop Distributed File System- Hadoop I/O Developing a Map Reduce Application - Map Reduce Types and Formats - Map Reduce Features – Hadoop Cluster Setup – Administering Hadoop 9 Unit 5 SECURITY IN THE CLOUD Basic Terms and Concepts – Threat Agents – Cloud Security Threats – Cloud Security Mechanism: Encryption, Hashing, Digital Signature, Public Key Infrastructure, Identity and Access Management, Single Sign-on, Cloud Based Security Groups, Hardened Virtual Server Images 9 COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing 9 CO2 : Identify the architecture, infrastructure and delivery models of cloud computing 600 - 1000000000000000000000000000000000	Cloud Infrastructure Mechanism: Cl	oud Storage, Cloud Usage	Monitor	; Reso	urce	
use Monitor, Audit Monitor, Failover System, Hypervisor, Resource Cluster, Multi 9 Device Broker, State Management Database – Cloud Management Mechanism: 9 Remote Administration System, Resource Management System, SLA Management 9 Unit 4 HADOOP AND MAP REDUCE 4 Apache Hadoop – Hadoop Map Reduce – Hadoop Distributed File System- Hadoop 9 I/O Developing a Map Reduce Application - Map Reduce Types and Formats - Map 9 Reduce Features- Hadoop Cluster Setup – Administering Hadoop 9 Unit 5 SECURITY IN THE CLOUD 5 Basic Terms and Concepts – Threat Agents – Cloud Security Threats – Cloud Security 9 Identity and Access Management, Single Sign-on, Cloud Based Security Groups, Hardened Virtual Server Images 9 COURSE OUTCOMES: At the end of the course, the student will be able to 0 CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing 0 CO2 : Identify the architecture, infrastructure and delivery models of cloud computing 0	Replication – Specialized Cloud Mec	hanism: Load Balancer, SLA	Monito	or, Pay-	-per-	
Device Broker, State Management Database – Cloud Management Mechanism: Remote Administration System, Resource Management System, SLA Management System, Billing Management System Unit 4 HADOOP AND MAP REDUCE Apache Hadoop – Hadoop Map Reduce – Hadoop Distributed File System- Hadoop I/O Developing a Map Reduce Application - Map Reduce Types and Formats - Map Reduce Features – Hadoop Cluster Setup – Administering Hadoop Unit 5 SECURITY IN THE CLOUD Basic Terms and Concepts – Threat Agents – Cloud Security Threats – Cloud Security Mechanism: Encryption, Hashing, Digital Signature, Public Key Infrastructure, Identity and Access Management, Single Sign-on, Cloud Based Security Groups, Hardened Virtual Server Images TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing CO2 : Identify the architecture, infrastructure and delivery models of cloud computing	use Monitor, Audit Monitor, Failove	r System, Hypervisor, Resou	arce Ch	ister, N	Aulti	9
Remote Administration System, Resource Management System, SLA Management System, Billing Management System Unit 4 HADOOP AND MAP REDUCE Apache Hadoop – Hadoop Map Reduce – Hadoop Distributed File System- Hadoop I/O Developing a Map Reduce Application - Map Reduce Types and Formats - Map Reduce Features- Hadoop Cluster Setup – Administering Hadoop Unit 5 SECURITY IN THE CLOUD Basic Terms and Concepts – Threat Agents – Cloud Security Threats – Cloud Security Mechanism: Encryption, Hashing, Digital Signature, Public Key Infrastructure, Identity and Access Management, Single Sign-on, Cloud Based Security Groups, Hardened Virtual Server Images TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing CO2 : Identify the architecture, infrastructure and delivery models of cloud computing	Device Broker, State Management	Database – Cloud Manage	ement l	Mechan	ism:	,
System, Billing Management System Unit 4 HADOOP AND MAP REDUCE Apache Hadoop – Hadoop Map Reduce – Hadoop Distributed File System- Hadoop I/O Developing a Map Reduce Application - Map Reduce Types and Formats - Map Reduce Features– Hadoop Cluster Setup – Administering Hadoop Unit 5 SECURITY IN THE CLOUD Basic Terms and Concepts – Threat Agents – Cloud Security Threats – Cloud Security Mechanism: Encryption, Hashing, Digital Signature, Public Key Infrastructure, Identity and Access Management, Single Sign-on, Cloud Based Security Groups, Hardened Virtual Server Images TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing CO2 : Identify the architecture, infrastructure and delivery models of cloud computing	Remote Administration System, Res	ource Management System,	SLA N	Ianagei	nent	
Unit 4 HADOOP AND MAP REDUCE Apache Hadoop – Hadoop Map Reduce – Hadoop Distributed File System- Hadoop I/O Developing a Map Reduce Application - Map Reduce Types and Formats - Map Reduce Features– Hadoop Cluster Setup – Administering Hadoop Unit 5 SECURITY IN THE CLOUD Basic Terms and Concepts – Threat Agents – Cloud Security Threats – Cloud Security Mechanism: Encryption, Hashing, Digital Signature, Public Key Infrastructure, Identity and Access Management, Single Sign-on, Cloud Based Security Groups, Hardened Virtual Server Images TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing CO2 : Identify the architecture, infrastructure and delivery models of cloud computing CO2 : Identify the architecture, infrastructure and delivery models of cloud computing	System, Billing Management System					
Apache Hadoop – Hadoop Map Reduce – Hadoop Distributed File System- Hadoop 9 I/O Developing a Map Reduce Application - Map Reduce Types and Formats - Map 9 Reduce Features – Hadoop Cluster Setup – Administering Hadoop 9 Unit 5 SECURITY IN THE CLOUD 8 Basic Terms and Concepts – Threat Agents – Cloud Security Threats – Cloud Security 9 Mechanism: Encryption, Hashing, Digital Signature, Public Key Infrastructure, 9 Identity and Access Management, Single Sign-on, Cloud Based Security Groups, 9 Kardened Virtual Server Images 70 TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing 6 CO2 : Identify the architecture, infrastructure and delivery models of cloud computing 100	Unit 4 HADOOP AND MAP REDUC	CE	~		-	
I/O Developing a Map Reduce Application - Map Reduce Types and Formats - Map 9 Reduce Features- Hadoop Cluster Setup - Administering Hadoop 9 Unit 5 SECURITY IN THE CLOUD 9 Basic Terms and Concepts - Threat Agents - Cloud Security Threats - Cloud Security 9 Mechanism: Encryption, Hashing, Digital Signature, Public Key Infrastructure, 9 Identity and Access Management, Single Sign-on, Cloud Based Security Groups, 9 Hardened Virtual Server Images 9 TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing 6 CO2 : Identify the architecture, infrastructure and delivery models of cloud computing 100	Apache Hadoop – Hadoop Map Redu	uce – Hadoop Distributed Fil	le Syste	m- Hao	doop	
Reduce Features- Hadoop Cluster Setup - Administering Hadoop Unit 5 SECURITY IN THE CLOUD Basic Terms and Concepts - Threat Agents - Cloud Security Threats - Cloud Security Mechanism: Encryption, Hashing, Digital Signature, Public Key Infrastructure, Identity and Access Management, Single Sign-on, Cloud Based Security Groups, Hardened Virtual Server Images TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing CO2 : Identify the architecture, infrastructure and delivery models of cloud computing	I/O Developing a Map Reduce Applie	cation - Map Reduce Types a	and For	mats -	Мар	9
Unit 5 SECURITY IN THE CLOUD Basic Terms and Concepts – Threat Agents – Cloud Security Threats – Cloud Security Mechanism: Encryption, Hashing, Digital Signature, Public Key Infrastructure, Identity and Access Management, Single Sign-on, Cloud Based Security Groups, Hardened Virtual Server Images TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing CO2 : Identify the architecture, infrastructure and delivery models of cloud computing	Reduce Features – Hadoop Cluster Set	up – Administering Hadoop				
Basic Terms and Concepts – Threat Agents – Cloud Security Threats – Cloud Security Mechanism: Encryption, Hashing, Digital Signature, Public Key Infrastructure, Identity and Access Management, Single Sign-on, Cloud Based Security Groups, Hardened Virtual Server Images TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing CO2 : Identify the architecture, infrastructure and delivery models of cloud computing	Unit 5 SECURITY IN THE CLOUD			1.0	•	
Mechanism: Encryption, Hashing, Digital Signature, Public Key Infrastructure, 9 Identity and Access Management, Single Sign-on, Cloud Based Security Groups, 9 Hardened Virtual Server Images TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing CO2 : Identify the architecture, infrastructure and delivery models of cloud computing	Basic Terms and Concepts – Threat A	gents – Cloud Security Threa	ts - Clo	ud Sec	urity	
Identity and Access Management, Single Sign-on, Cloud Based Security Groups, Hardened Virtual Server Images TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing CO2 : Identify the architecture, infrastructure and delivery models of cloud computing	Mechanism: Encryption, Hasning,	Digital Signature, Public F	xey ini	rastruc	ture,	9
TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing CO2 : Identify the architecture, infrastructure and delivery models of cloud computing	Identity and Access Management, S	Single Sign-on, Cloud Based	i Secur	ity Gro	oups,	
TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing CO2 : Identify the architecture, infrastructure and delivery models of cloud computing	Hardened Virtual Server Images					
COURSE OUTCOMES: At the end of the course, the student will be able to CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing CO2 : Identify the architecture, infrastructure and delivery models of cloud computing			Т		45 DF	BIUDE
CO1 : Articulate the main concepts, key technologies, strengths and limitations of cloud computing CO2 : Identify the architecture, infrastructure and delivery models of cloud computing	COURSE OUTCOMES. At the and a	f the course the student will be	able to			
computing CO2 : Identify the architecture, infrastructure and delivery models of cloud computing	$CO1 \cdot Articulate the main concepts ke$	v technologies strengths and	limitati	one of a	hud	
CO2 : Identify the architecture, infrastructure and delivery models of cloud computing	computing	y teennologies, strengths and	mmath		.10uu	
CO2. E 1 : (1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	CO2 · Identify the architecture infrast	ructure and delivery models of	f cloud	comput	ina	
I I I I H HVDIGIN THE CORE ISSUES OF CLOUD COMPUTING SUCH OS SOOURITY privilate and interconcretistic	CO_2 . Identify the architecture, initially CO_3 : Explain the core issues of aloud	computing such as scourity r	riveev	and inte	roporo	hility

CO4 : Choose the appropriate technologies, algorithms and approaches for the related issues CO5 : Understanding the concepts of Big data tool and its analysis techniques

CO PO MAPPING

		•													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	1
CO1	3	-	-	-	-	-	-	-	-	-	-	-	2	-	İ.
CO2	-	-	-	2	-	-	-	-	-	2	-	-	-	2	İ.
CO3	-	-	3	-	-	-	-	-	-	2	-	-	-	2	l
CO4	-	-	-	2	-	-	-	-	-	-	-	-	-	2	l
CO5	-	-	-	-	2	-	-	-	-	-	-	2	-	2	I

REFERENCE BOOKS:

1. Thomas Erl, Zaigham Mahood, Ricardo Puttini, "Cloud Computing, Concept, Technology and Architecture", Prentice Hall, 2013

2. Toby Velte, Anthony Velte, Robert C. Elsenpeter, "Cloud Computing, A Practical Approach", Tata McGraw-Hill Edition, 2010

3. Rajkumar Buyya, Christian Vecchiola, S. Thamarai Selvi, "Mastering Cloud Computing", Tata McGraw-Hill, 2013

CS6	24008: Internet Security				
Course Category: Programme		L	Т	Р	С
Core	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:					
• To study the fundamental concepts	of classical encryption techni	ques an	d Crypt	Analy	ysis.
• To understand the principles of sec	ret keys management.	-	• 1		
• To acquire the concepts of IP Secu	rity and its applications				
• To study the concepts of Transport	layer security and its applicat	ions			
• To learn the working principle of E	Email and public key distributi	on			
Unit 1 INTRODUCTION AND BAS	SIC ENCRYPTION				
Introduction – Essentials of Cryptog	raphy, Essentials of Networ	king aı	nd Inter	met,	
Security Objectives, Communication S	Security, Legal restrictions, Ba	asics of	Encryp	tion	0
- Building Blocks of Encryption, C	Cryptanalysis and Modern C	odes, E	Brute F	orce	,
cracking of Secret Keys, Choosing Cry	ptography Algorithms				
Unit 2 LINK ENCRYPTION AND S	SECURE KEY MANAGEM	ENT			
Link Encryption – In-line Encryp	tor, Point to Point Encry	ption,	IP Ro	uted	
Configuration, Managing Secret K	eys – Issues in Secret I	Key M	anagem	ient,	0
Technology - Random Key Generat	ion, Random Seeding, Pseud	dorando	m Nun	nber	9
Generators, Manual Key Distribution,	Automatic Rekeying, Key D	istributi	on Cen	tres,	
Maintaining Keys and System Security					
Durit 5 IP LAYER SECURITY AND Basic Issues in IP Security (IPSEC)	Cryptographic Checksums ID	Soouri	Ty Droto	201	
IDSEC key management TCD/ID Netw	vork Security Protocols Virtu	ol Drive	ly PIOLO to Notu	vork	
(VDN) Jaquag in VDN IDSEC provu	orvertography IPSEC operation	ting Do	utor Sit	vork	0
(VFIN) – Issues III VFIN, IFSEC PIOXy Site Encryption Demote Access with	DSEC problems in IDS	EC alia	uter, Sit		9
Client Client to Server site access	1 If SEC = problems in If S		ints, 11 .	SEC	
Unit 4 TRANSPORT LAYER SECI	IRITY AND APPLICATIO	NS			
Public Key Cryptography, RSA Encry	votion. Key Exchange with R	SA. See	cure So	cket	
Laver (SSL). World Wide Web Trans	action Security – Issues in I	nternet	Transac	tion	0
Security. Transactions on World Wid	le Web. Security Alternative	es for V	Veb For	rms.	9
Web Browser with SSL, Web Server w	vith SSL			~,	
Unit 5 SECURE E-MAIL AND PUB	LIC KEY CERTIFICATES	1			
Secure Email - Email Security Issue	s, Basics of Internet E-Mail	l, Offlin	ne Mess	sage	
Keying, Digital Signature, Secure Ema	ail Client, Public Key Certific	cates –	Distribu	ting	0
Public Keys, Public Key Certificates,	Certificate Distribution, Centr	alized C	Certifica	tion	9
Authority, Hierarchical Certification A	uthority, Pretty Good Privacy	(PGP)			
		T	OTAL:	45 PE	RIODS
COURSE OUTCOMES: At the end or	f the course, the student will be	e able to			
CO1 : Interpret basic building blocks of	f encryption for cryptanalysis				
CO2 : Identify suitable key generation	technique for secret key mana	agement			
CO3 : Apply IP security in VPN and R	emote Access				
CO4 : Apply SSL in World wide web	ransactions				

CO4 : Apply SSL in World wide web transactions

CO5 : D	Discov	er vari	ious p	ublic k	key and	d certi	ficate	distrib	oution	strateg	ies and	its use	in PGF)
CO PO MAPPING														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO ₂

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3									3		
CO2	3	3	3		2						3	3	3	
CO3	3	3	2		2						3	3	3	
CO4	3	2	3	2							2	2		2
CO5	3	3		2								2		2
REFER	RENC	E BOO	OKS:					-						
1. Ricl	hard E	.Smith	n, Inter	rnet C	ryptog	graphy	, 6th E	Editior	n, Pear	son, 20	11			
2. Tim	Speed	d, Juar	nita El	lis, "Iı	nternet	t Secu	rity", I	Elsevi	er, 200)6				
3. Uyl	ess Bl	ack, "I	nterne	et Secu	urity P	rotoco	ols – P	rotect	ing IP	Traffic	", Pear	son Ed	ucation	, 2001
4. Wao	de Tra	ppe, L	awrer	nce C	Washi	ngton	, "Intr	oducti	on to	Crypto	graphy	with c	oding t	heory",
2nd	editio	n, Pea	rson, ź	2007		-				• •			-	•
5. Wil	liam S	Stallin	gs, Ci	yptog	raphy	and	Netwo	ork Se	curity	, 6th I	Edition,	Pears	on Edu	cation,
Mar	ch 20	13	<i>,</i>	<i>J</i> 1 C	1 5				5	,	,			,
6. Bru	ce S	chneie	er an	d N	eils	Fergu	son,	—Pra	actical	Cryp	tograp	hy∥, F	irst I	Edition,
Wil	eyDre	amtecl	h India	a Pvt I	Ltd, 20)03								
7. W.	Mao,	"Mo	dern (Crypto	graph	y - '	Theor	y and	Pract	tice", l	Pearson	Educ	ation,	Second
Edit	ion 2	007												

Bouglas R Simson — Cryptography – Theory and practicell, First Edition, CRC Press, 1995

CS624102: IM	AGE F	ROCE	ESSIN	GLA	BORA	TORY			
Course Category: Programme	C	T.				L	Т	Р	С
Core	Cot	Irse 1	ype: 1	neory	y	0	0	4	2
COURSE OBJECTIVES:									
To learn Image Processing Techn	iques								
• To display various Images in Ima	ge Pro	cessin	g						
• To implement Various Segmentat	ion Te	chniqu	les in	Image	Proces	ssing			
• To implement Image restoring tec	hnique	es.							
• To implement slicing technique f	or ima	ge enł	nancen	nent					
LIST OF EXPERIMENTS									
1. Display of Grayscale Images Imag	ge, Neg	gative	of an l	Image	(Binar	y & Gra	ay Scal	e)	
2. Implementation of Relationships	betwee	en Pixe	els.						
3. Implementation of Transformation	s of an	Image	e.						
4. Implementation of image restoring	techni	ques							
5. Implementation of Image Intensity	slicing	g techr	nique f	for image	age enh	ancem	ent		
6. Implementation of Canny edge de	tection	Algor	ithm						
7. Implement the Algorithm for Edge	detect	ion us	ing Op	perator	rs				
8. Implementation of Segmentation	using v	waters	hed tra	ansfor	m.				
9. Implementation of Histogram Equa	lizatio	n Alg	orithm	1.					
10. Implementation of Non-linear File	ering	Techn	iques.						
11. Implement the Algorithm for Edg	e dete	ction u	ising C)perate	ors.				
12. Implementation of Filtering in fre	quency	y dom	ain						
						TO	DTAL:	45 PEI	RIODS
COURSE OUTCOMES: At the end	of the	course,	, the st	udent	will be	able to			
CO1 : learn Image Processing Techni	ques								
CO2 : implement Various Segmentat	ion Te	chniqu	les in l	[mage	Proces	sing			
CO3 : implement slicing technique for	or imag	ge enh	ancem	nent					
CO PO MAPPING									
PO1 PO2 PO3 PO4 PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	1								1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							2	2	1 2

PROGRAMME ELECTIVE -I [SEM-I]

CS624201:	Advanced Database Technolog	gies			
Course Category: Programme	Course True of Theorem	L	Т	Р	С
Elective	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:					
• To know the fundamental Concept	s of Database Management.				
• To define a good database design	-				
• To define query processing using v	iews				
• To explain the importance of secur	ity in statistical databases				
• To state the principle of design of a	listributed database managem	ent syst	em		
Unit 1 Overview					
Overview of a Database Management	Systems – Evolution of Dat	abase N	lanager	nent	
Systems – Basics of the Relational Mo	odel – Design of Relational E	Database	Schem	as –	
High level Database Models: Desig	n principles – Algebraic a	nd Log	ical Q	uery	9
Languages – Database Language SC	QL – SQL in a Server Env	vironme	nt – S	emi-	
structured Data Model – Data Mining	– Information Integration				
Unit 2 Query Processing and Evalua	ntion				
Query Processing: An Introduction:	optimization – measure of a	query co	ost – se	elect	
operation – sorting – Join operation: N	lested loop – Block nested loo	op – Ind	exed ne	ested	
loop – merge join – hash join – comp	lex join – other operations –	Represe	ntation	and	9
Evaluation of Query Expression – C	reation of Query Evaluation	Plans -	- View	and	
Query Processing					
Unit 3 Relational Database Design					
Overview – Basics of the Relational	Model – Features of Good	Databas	e Desig	gn –	
Enhanced ER Tools – Functional	Dependency: Theory and	Norm	alizatio	n –	0
Multivalued Dependency – Fourth No	ormal Forms – Join Depende	ncy - F	ifth No:	rmal	9
Form – Inclusion Dependency – Temp	blate Dependency - Domain F	key Nor	mal Foi	rm –	
Modeling Temporal Data					
Unit 4 I ransaction Management and	Enhanced Lock Deced Dry	togol	Timest	0.000	
Based Protocol: Multiple Granulari	- Elillanced Lock Based Pic	10001 -	Timest	amp	
Timestamp Ordering Multi Vers	ion Two Phase Locking	us. wiu Weak		sion	
Consistency Concurrency in Index	Structures Eailure Classif	ication	Reco	verv	9
Algorithms = Buffer Management = A	dvanced Recovery Technique	s = Rem	- Reco	rkun	
Systems	avanced Recovery Teeninque	5 Refi	ote Da	Kup	
Unit 5 Database Security and Autho	rization				
Introduction – Database Security: So	cenario – Levels of Databas	se Secu	rity: Se	erver	
Security – Database Connections –	Table Access Control – R	estrictin	g Data	base	
Access – Access Control: Granting pe	ermissions – Removing perm	issions	– Statis	tical	9
Database Security – Multilevel Security	ity – Audit trails in Database	– Veno	lor Spe	cific	
E-security	-		•		
		Т	DTAL:	45 PE	RIODS

COURSE OUTCOMES: At the end of the course, the student will be able to

- CO1 : Understand the fundamental Concepts of Database
- CO2 : Learn about Query Processing and Evaluation
- CO3 : Know & Discuss Relational Database Design

CO4 : Understand the concept of Transaction and Analyze the Algorithms to give Recovery Techniques

CO5 : Understand the High Levels of Data Security & Access Control

CO PO MAPPING

		•													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3				2									2	
CO2		2		3					2		2		1		
CO3	3	2	2		3						1		2		
CO4	2										2			1	
CO5	1				2				3		3		2		
			0.770												_

REFERENCE BOOKS:

1. Hector-Garcia Molina, Jeffery D.Ullman, Jenifer Wisdom, "Database System – The Complete Book" Standford University, Pearson Prentice Hill,2nd Edition

2. Dr.Radyanbi Tibor "Advanced Database Management Systems" Tartalom Publication

3. Silberschatz, Korth and Sudarshan "Database System Concepts"7th Edition

- 4. Data base Management Systems, Raghurama Krishnan, Johannes Gehrke, TATA McGrawHill 3rd Edition
- 5. Jef Van Loon "Database Security Concepts and Challenges" Pearson,5th Edition

CS62	24202: Web Engineering				
Course Category: Programme		L	Т	Р	C
Elective	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:					
• To describe the concepts of WWW	including browser and HTTP	protoc	ol.		
• List the various HTML tags and us	e them to develop the user-fri	endly w	eb page	es.	
• To Define the CSS with its types	and use them to provide the	e styles	to the	web p	ages at
various levels	-	-		-	-
• Use the JavaScript to develop the d	lynamic web pages.				
• Use server side scripting with PHP	to generate the web pages dy	namica	lly using	g the d	atabase
connectivity					
Unit 1 Introduction and Web Design					
Concept of WWW, Internet and WWV	W, HTTP Protocol : Request a	and Res	ponse, '	Web	
browser and Web servers, Features of	Web 2.0, Concepts of effectiv	e web c	lesign, '	Web	
design issues including Browser, Band	dwidth and Cache, Display re	solution	n, Look	and	9
Feel of the Website, Page Layout and	linking, User centric design,	Sitema	p, Plan	ning	
and publishing website, Designing effe	ective navigation				
Unit 2 HTML and Style sheets					
Basics of HTML, formatting and fo	onts, commenting code, colo	or, hype	erlink, 1	lists,	
tables, images, forms, XHTML, Meta	tags, Character entities, fram	nes and	frame	sets,	
Browser architecture and Web site str	ucture. Overview and features	s of HT	ML5, N	leed	9
for CSS, introduction to CSS, basic	syntax and structure, using	CSS,	backgro	ound	-
images, colors and properties , manip	pulating texts, using fonts, t	orders	and bo	oxes,	
Inargins, padding lists, positioning usin	ig CSS, CSS2, Overview and	leatures	5 01 CS3	55	
Client side scripting with IsveScript	t variables functions con	ditions	loong	and	
repetition Pop up hoves Advance Is	usserint: JavaScrint and object	unions,	Sorint	anu	0
objects the DOM and web	vaseripi. Javaseripi and objec	.18, Java	iscript	Own	9
Unit 4 XMI and AIAX					
Introduction to XML uses of XML	simple XML and XML key	compo	nents T	OTO	
and Schemas, Using XML with application	ation. Transforming XML usi	ng XSL	and XS	SLT.	9
AJAX Introduction, XMLHttp, Reques	st. and Response. Form Valida	ation		/,	-
Unit 5 PHP					
Introduction and basic syntax of PHP	, decision and looping with e	xample	s, PHP	and	
HTML, Arrays, Functions, Browser	control and detection, string,	Form	process	sing,	9
Files, Advance Features: Cookies and	Sessions		1	0,	
		T	OTAL:	45 PE	RIODS
COURSE OUTCOMES: At the end of	f the course, the student will be	able to			
CO1 : Describe the concepts of WWW	including browser and HTTP	protoc	ol		
CO2 : List the various HTML tags and	use them to develop the user-	friendly	y web p	ages	
$CO3$: Define the \overline{CSS} with its types ar	nd use them to provide the styl	les to th	e web p	ages a	t
various levels					

CO4 : Develop the modern web pages using the HTML and CSS features with different layouts as per need of applications

CO5 : Use server side scripting with PHP to generate the web pages dynamically using the database connectivity

CO PO MAPPING

		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
	CO1	3	-	-	-	3	-	-	-	-	-	-	-	2	-	
	CO2	-	-	-	3	-	-	-	-	-	2	-	-	-	2	
	CO3	-	-	3	-	-	-	-	-	-	2	-	-	-	2	
	CO4	-	-	-	2	-	-	-	-	-	-	-	-	-	2	
	CO5	-	-	-	-	2	-	-	-	-	-	-	2	-	2	

REFERENCE BOOKS:

1. Jeffrey C. Jackson, "Web Technologies-A Computer Science Perspective", Pearson Education, 2012

2. Developing Web Applications, Ralph Moseley and M. T. Savaliya, Wiley-India

3. Web Technologies, Black Book, dream tech Press

CS624203: Artificial Intelligence														
Course Category: Programme		L	Т	Р	С									
Elective	Course Type: Theory	3	0	0	3									
COURSE OBJECTIVES:														
• To gain knowledge about the basic	s of artificial intelligence.													
• To understand the basics of Problem	m solving problems.													
• To understand about the knowledge	e representation													
 To learn about the features of intelligent agents 														
 To learn about the details of applications of AI 														
Unit 1 Introduction														
Introduction–Definition - Future of	f Artificial Intelligence –	Charac	teristics	s of										
Intelligent Agents– Typical Intelligent	Agents – Problem Solving A	pproach	n to Ty	oical	9									
AI problems	6	11												
Unit 2 Problem Solving methods														
Problem solving Methods - Search S	trategies- Uninformed - Infor	rmed -	Heurist	ics -										
Local Search Algorithms and Opti	imization Problems - Searc	ching v	vith Pa	artial										
Observations - Constraint Satisfac	tion Problems – Constrai	int Pro	pagatio	n -	9									
Backtracking Search - Game Playing	- Optimal Decisions in Gan	nes – A	lpha -	Beta										
Pruning - Stochastic Games														
Unit 3 Knowledge Representation														
First Order Predicate Logic – Prolog I	Programming – Unification –	Forwar	d Chair	ning-										
Backward Chaining – Resolution	- Knowledge Representati	ion -	Ontolog	gical	0									
Engineering-Categories and Objects -	- Events - Mental Events and	d Menta	al Obje	cts -	9									
Reasoning Systems for Categories - Re	easoning with Default Information	ation												
Unit 4 Software Agents														
Architecture for Intelligent Agents	- Agent communication -	- Nego	tiation	and										
Bargaining – Argumentation among Agents – Trust and Reputation in Multi-agent														
systems														
Unit 5 Applications														
AI applications – Language Models –	Information Retrieval- Inform	mation I	Extracti	on –	0									
Natural Language Processing - Machine Translation – Speech Recognition – Robot –														
Hardware – Perception – Planning – M	Hardware – Perception – Planning – Moving													
TOTAL: 45 PERIODS														
COURSE OUTCOMES: At the end o	f the course, the student will be	e able to												
CO1 : Know the basics of Artificial intelligence														
CO2 : Know the concepts of problem Solving methods														
CO3 : Learn the concept of Knowledge Representation in AI														
CO4 : Understand the characteristics of Software agents														
CO5 : analyze about the applications of AI														
CO PO	CO PO MAPPING													
--	---------------	----------	--------	--------	---------	---------	----------	---------	----------	-----------	----------	---------	----------	------
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2						2			1	
CO2	2	2								2				2
CO3			2										1	
CO4	2		2							2				1
CO5						2							2	
REFERENCE BOOKS:														
1. S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach, Prentice Hall, Third														
Edit	tion, 2	009		-			-							
2. I. B	ratko,	-Pro	log: P	rograr	nming	for A	rtificia	al Inte	lligen	cell, Fou	ırth edi	tion, A	ddison-	
Wes	sley Ec	ducation	onal P	ublish	ers Inc	c., 201	1		-					
3. M. Tim Jones, —Artificial Intelligence: A Systems Approach(Computer Science), Jones and														
Bartlett Publishers, Inc.; First Edition, 2008														
4. Nils	J. Nil	sson,	—The	Ques	t for A	rtifici	al Inte	lligen	cell, Ca	ambrid	ge Univ	versity	Press, 2	2009

CS624204:	Service Oriented Architectu	ire			
Course Category: Programme	Course True of Theorem	L	Т	P	С
Elective	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:					
• To gain understanding of the basic	principles of service orientati	on			
• To learn service oriented analysis t	echniques				
• To learn technology underlying the	e service design				
• To learn advanced concepts such a	s service composition, orches	tration a	and Cho	reogra	phy
• To know about various WS specifi	cation standards			0	
Unit 1 INTRODUCTION AND SOA					
Roots of SOA – Characteristics of S	SOA - Comparing SOA to	client -	server	and	
distributed internet architectures -An	atomy of SOA - How comp	onents	in an S	SOA	9
interrelate - Principles of service orient	tation				
Unit 2 WEB SERVICES					
Web services-Service descriptions-	-Messaging with SOAP-M	Aessage	exch	ange	
Patterns– Coordination–Atomic T	ransactions–Business activi	ties-Or	chestrat	ion–	9
Choreography-Service layer abstraction	on-Application Service Laye	r–Busir	less Sei	rvice	,
Layer–Orchestration Service Layer					
Unit 3 APPLICATION SERVICES					
Service oriented analysis-Business-c	entric SOA-Deriving busine	ess serv	ices-sei	rvice	
modeling Service Oriented Design-	WSDL basics-SOAP basics-	-SOA	compos	ition	9
guidelines–Entity centric business se	rvice design-Application se	rvice d	esign–7	ask-	-
centric business service design Softwa	re as a System (SaaS), SOA in	n cloud	comput	ing	
Unit 4 WEB SERVICE ORIENTED I	LANGUAGES				
SOA platform basics–SOA support in	n J2EE–Java API for XML-	based w	veb serv	vices	
(JAX-WS)- Java architecture for XMI	L binding (JAXB)–Java API	tor XM	L Regis	stries	9
(JAXR)-Java API for XML based F	RPC (JAX-RPC) Common I	Languag	e Runt	1me-	
ASP.NET web forms-ASP.NET web s	services–Web Services Enhan	cements	s (WSE)	
Wab Sagurity DDEL basics Coordina	tion quantiany Change another	Doliar	Second	:+-,	
Addressing Language basics – Coordina	able massaging Language h	, Policy	, Secur	lly –	
Flowert The ACK Dequest Flow	able messaging Language b	ing El	monto	WC	0
Security Language basics Termine	alogy massage protection m	ang Ek	m Tol	vv S-	9
Signature Encryption Timestamp	blogy, message protection m	lechams	III, 101	xens,	
Signature, Encryption, Timestamp					
				45 DE	DIODO
		T	OTAL:	45 PE	RIODS
COURSE OUTCOMES: At the end o	f the course, the student will be	e able to			
CO1 : Gain knowledge on basic conce	pts of SOA and it differs with	other a	rchitect	ures	
CO2 : Understand the knowledge on a	dvanced concepts of service c	omposi	tion, Or	chestra	ition
and Choreography. Understanding of v	web service framework with re	espect to	SOA		
CO3 : Learn various service oriented a	nalysis techniques. Understan	id the te	chnolog	gy unde	erlying

the service design

CO4 : Gain knowledge on creation of SOA compliant web service using various technologies

and acquire hands-on experience on the same

CO5 : Gain knowledge on various open standards available for developing SOA compliant web services

CO PO	CO PO MAPPING														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2													
CO2	3	3					2								
CO3			2		2								2		l
CO4	3			3						3					l
CO5			2											2	
			~ = = ~												

REFERENCE BOOKS:

1. Thomas Erl, "Service-Oriented Architecture: Concepts, Technology, and Design", Pearson Education ,Second Edition, 2011.

2. Thomas Erl, "SOA Principles of Service Design "(The Prentice Hall Service-Oriented Computing Series from Thomas Erl), 2005

3. Newcomer, Lomow, "Understanding SOA with Web Services", Pearson Education, 2005

CS624205: Information Storage Management	
Course Category: Programme	С
Elective Course Type: Theory 3 0 0	3
COURSE OBJECTIVES:	
• Understand the storage architecture and technologies in Informationmanagement.	
• Learn to establish and manage a data center.	
• Learn various storage technologies for the required application.	
• Apply security measures to the data center	
Unit 1 STORAGE TECHNOLOGY	
Review data creation - Amount of data being created - Understand the value of data to	
a business - Challenges in data storage and data management -Solutions available for	0
data storage - Core elements of a data center infrastructure - Role of each element in	9
supporting business activities	
Unit 2 STORAGE SYSTEM ARCHITECTURE	
Hardware and software components of the host environment - Key protocols and	
concepts used by each component - Physical and logical components of a connectivity	
environment - Major physical components of a disk drive and their function - Logical	
constructs of a physical disk - Access characteristics - Performance Implications -	9
Concept of RAID and its components – Different RAID levels and their suitability for	
different application environments - Compare and contrast integrated and modular	
storage systems - High-level architecture and working of an intelligent storage system	
Unit 3 INTRODUCTION TO NETWORKED STORAGE	
Evolution of networked storage - Architecture - Components - Topologies of FC-SAN -	
NAS - IP-SAN - Benefits of the different networked storage options -Understand the	
need for long-Term archiving solutions - Describe how CASfullfill the need -	9
Understand the appropriateness - Different networked storage options - Different	
application environments	
Unit 4 INFORMATION AVAILABILITY, MONITORING & MANAGING	DATA
CENTERS	
List reasons for planned or unplanned outlages - Impact of downtime -Business	
continuity (BC) - Disaster recovery (DR) - RTO - RPO - Identify single points of failure. List solutions to mitigate failure. Architecture of healway / recovery	
Different healup or recovery topologies – Architecture of backup / fectively –	
information availability and business continuity. Remote replication technologies	9
Pole in providing disaster recovery and business continuity - Remote replication technologies -	
Role in providing disaster recovery and business continuity capabilities - identify Key	
management. Key metrics. Key management tasks	
Unit 5 SECURING STOPACE AND STOPACE VIRTUALIZATION	
Information security - Critical security attributes - Storage security domains List and	
analyze the common threats in each domain – Virtualization technologies - Rlock-level	9
and file-level virtualization technologies and processes	,
and the level virtualization commologies and processes	
	DIODO

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1 : Understand the basics of storage management for Information maintenance

CO2 : Understand the requirements and strategies for the data center

CO3 : Identify the storage technologies for the required application

CO4 : Understand the security measures to data center

CO5 : Understand the Quality of Service needed in Storage

CO PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	-	-	-	-	-	-	-	-	2	-
CO2	3	3	2	2	-	-	-	-	-	-	-	-	2	-
CO3	3	3	3	3	-	-	-	-	-	-	-	-	2	-
CO4	3	3	3	3	-	-	-	-	-	-	-	-	-	2
CO5	3	3	3	3	-	-	-	_	-	-	-	-	-	2

REFERENCE BOOKS:

1. EMC Corporation, "Information Storage and Management: Storing, Managing, and Protecting Digital Information", Wiley, India, 2012

2. Marc Farley, "Building Storage Networks", Tata McGraw Hill", Osborne, 2001

3. Robert Spalding, "Storage Networks: The Complete Reference", Tata McGraw Hill, Osborne, 2003

PROGRAMME ELECTIVE -II [SEM-II]

CS62	4206: Internet of Things				
Course Category: Programme		L	Т	Р	С
Elective	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:			L		
• To identify the components of IoT.					
• To analyze various protocols of Io	Γ.				
• To design portable IoT using approx	opriate boards.				
• To design business Intelligence and	d Information Security for Wo	ъT.			
• To develop schemes for the applica	ations of IOT in real time scer	narios			
Unit 1 Introduction to IoT					
Internet of Things-Components-Ph	nysical and Logical Des	ign-IoT	Enat	oling	0
and Dasign Management	ates- 101 Domains-101 and M	M2M-10	I Platic	orms	9
Unit 21oT Architectures					
M2M High level ETSL architecture II	TE Architecture for IoT OC	C Arch	itaatura	IoT	
Reference Model-Domain Mod	lel-Information Model-Eu	nctional	M	-l01 del	0
Communication Model-JoT Sample A	rchitectures	netionai	IVIC	Juei-	,
Unit 3 IoT Protocols	lentcetures				
Protocol Standardization for IoT-Effor	ts-M2M and WSN Protocols-	SCAD	A and R	FID	
Protocols Unified Data Standards-	Protocols-IEEE $802.15.4$ -	BACNet	Proto		9
Modbus-Zigbee Architecture– Networ	k laver–6LowPAN -CoAP-Se	curity	11000	001	,
Unit 4 Building IoT using Raspberry I	Pi and Arduino	<i>••••</i>			
Building IOT with RASPERRY PI-	IoT Systems-Logical Design	using	Pvthon	-IoT	
Physical Devices & Endpoints-IoT De	vice-Building Blocks-Raspbe	erry Pi-B	oard-L	inux	•
on Raspberry Pi-Raspberry Pi Interf	faces-Programming Raspberr	y Pi w	ith Pyt	hon-	9
Other IoT Platforms-Arduino		-	-		
Unit 5 Case Studies and Practices					
Real world design Constraints-Applica	ations-Asset management, Ind	dustrial	automa	tion,	
smart grid, Commercial building auto	omation, Smart cities-particip	atory Se	ensing-	Data	0
Analytics for IoT–Software & Manag	gement Tools for IoT Cloud	Storage	Mode	ls &	,
Communication APIs-Cloud for IoT-A	Amazon Web Services for IoT				
		TO	DTAL:	45 PE	RIODS
COURSE OUTCOMES: At the end of	f the course, the student will be	e able to			
CO1 : Explain the significance of the c	components of IoT				
CO2 : Explain the various protocols of	ToT				
CO3 : Describe the roles of portable Io	T using appropriate boards				
CO4 : Compare the performance of bu	siness Intelligence and Inforn	nation S	ecurity	for W	оТ
CO5 : Explain schemes for the applica	tions of IOT in real time scen	arios			

CO PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	2	-	-	-	-	-	2	-
<u>CO2</u> 3 2 2														
CO3	2	-	-	-	-	-	2	-	-	-	-	-	-	2
CO4	-	-	-	2	-	-	-	-	-	-	-	-	-	2
CO5	-	-	-	-	2	-	-	-	-	-	-	2	-	2
DFFFD	ENC		AVG.											

REFERENCE BOOKS:

- 1. HonboZhou,"The Internet of Things in the Cloud: A Middleware Perspective" CRC Press 2012
- 2. Luigi Atzori, Antonio Lera, Giacomo Morabito, "The Internet of Things: A Survey", Journal on Networks, Elsevier Publications, October, 2010
- 3. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things Key applications and Protocols", Wiley, 2012

CS62	4207: Big Data Analytics								
Course Category: Programme	Course Type, Theory	L	Т	Р	С				
Elective	Course Type: Theory	3	0	0	3				
COURSE OBJECTIVES:									
• To Understand the fundamental Con	ncepts of Big data.								
• To Analyze the Clustering and Clas	sification Techniques.								
• To learn about the Applications of A	Association Rules.								
• To Apply the Stream Concepts Usin	ng Graph Analytics for Big	Data.							
• To Create the Hbase Using the NOS	SQL Concepts.								
Unit 1 Introduction to Big data									
Evolution of Big data – Best Prac	ctices for Big Data Ana	lytics -	– Big	data					
characteristics – Validating – The Pro	motion of the Value of B	ig Data	– Big	Data					
Use Cases- Characteristics of Big Data	Applications – Perception	and Qu	antifica	ation	Δ				
of Value -Understanding Big Data	Storage – A General C	Verviev	v of H	ligh-	9				
Performance Architecture - HDFS -	- Map Reduce and YAR	N - M	lap Re	duce					
Programming Model									
Unit 2 Clustering and Classification									
Advanced Analytical Theory and Meth	ods: Overview of Clusterin	ıg – K-r	neans –	Use					
Cases - Overview of the Method	- Determining the Num	ber of	Cluste	rs –					
Diagnostics – Reasons to Choose and	Cautions Classification	: Decis	ion Tre	es –	Q				
Overview of a Decision Tree – The Ge	neral Algorithm – Decisior	n Tree A	lgorith	ms –	,				
Evaluating a Decision Tree – Decision	Trees in R – Naïve Bayes -	- Bayes	'Theor	em –					
Naïve Bayes Classifier.									
Unit 3 Association and Recommenda	tion								
Advanced Analytical Theory and Meth	nods: Association Rules –	Overvie	w – Ap	riori					
Algorithm – Evaluation of Candidate	Rules – Applications of A	Associat	ion Ru	es –	_				
Finding Association & finding similar	ity – Recommendation System	stem: C	ollabor	ative	9				
Recommendation- Content Based	Recommendation – H	Knowled	ige B	ased					
Recommendation- Hybrid Recommend	ation Approaches.								
Unit 4 Stream Memory		1	<u></u>						
Introduction to Streams Concepts – St	tream Data Model and Ard	chitectu	re – Sti	ream					
Computing, Sampling Data in a Stre	am – Filtering Streams –	Count	ing Dis	tinct					
Elements in a Stream – Estimating m	ioments – Counting onene	ess in a	Windo	$\mathbf{w} - \mathbf{w}$	9				
Decaying Window – Real time Ana	alytics Platform(RTAP) a		ons - c	Case					
Studies – Real Time Sentiment Analytic	ysis, Stock Market Predict	tions. U	sing G	rapn					
Analytics for Big Data: Graph Analytics									
Vinit 5 No SQL Data Management 10	r Dig data and visualizati Modolali: Increasing Flo	011 vibility	for	Data					
Manipulation-Key Value Stores- Doci	ument Stores Tabular St	ores	Object	Dala Data					
Stores - Graph Databases Hive Shores	ling_Hhase_Analyzing	via data	with to	vitter	Q				
- Big data for E-Commerce Big data	for blogs $=$ Review of R	asic De	ta Δna	lytic	,	ľ			
Methods using R			1 1110	1,110					
		,	ТОТАТ	. 45 DI	EDIO	ne			
			ΙΟΙΑΙ	J: 43 PI	CKIU	US			

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1 : Understand the fundamental Concepts of Big data

CO2 : Analyze data by utilizing clustering and classifications algorithm

CO3 : Learn and apply different mining algorithms and recommendation systems for large volumes of data

CO4 : Perform Analytics on data streams

CO5 : Learn NoSQL Databases and Management

CO PO MAPPING

		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
	CO1	3				2						2		1		
	CO2	3	2			2						1				ĺ
	CO3	2				2				2		2				
	CO4	1				2						2				
	CO5	2	2			2						1	2			
_	DEED			o TTO												

REFERENCE BOOKS:

1. AnandRajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 2012

- 2. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, NoSQL, and Graph", Morgan Kaufmann/El sevier Publishers, 2013
- 3. EMC Education Services, "Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data", Wiley publishers, 2015
- 4. Bart Baesens, "Analytics in a Big Data World: The Essential Guide to Data Science and its Applications", Wiley Publishers, 2015

CS624208: M	obile and Pervasive Com	outing				
Course Category: Programme		L	Т	Р	С	
Elective	Course Type: Theory	3	0	0	3	
COURSE OBJECTIVES:						
• To understand the fundamental cond	cepts of mobile computing					
• To know about Emerging technolog	gies					
• To learn about GPRS and its application	ation					
• To know about mobile adaptive con	nputing and data dissemina	tion ma	nageme	ent		
• To provide an introduction about m	obile middleware		U			
Unit 1 INTRODUCTION						
Introduction: - Mobile Computing - M	liddleware And Gateways	- Applie	cations	And		
Services – Developing Mobile A	pplications –Blue tooth,	WiFi,	WiM	IAX,		
3G.WATM Mobile IP protocols-M	Tobile computing Archite	ecture:	Interne	t-the	9	
Ubiquitous network - Architecture For	Mobile Computing - Three	e Tier A	Archited	cture		
- Design considerations for Mobile Cor	nputing – Mobile Computing	ng throu	gh Inte	rnet		
Unit 2 EMERGING TECHNOLOGI	ES AND GSM COMMU	NICAT	ION			
Emerging Technologies: Radio Fre	equency Identification (H	RFID)	- Wire	eless		
Broadband (Wimax) - Mobile IP -Inter	rnet Protocol Version 6(IP	v6). Glo	bal Sy	stem		
For Mobile Communications (GSM):	Global System For Mobile	Comm	unicatio	ons -		
GSM Architecture - GSM Entities - Ca	all Routing in GSM –PLM	N Inter	faces- (GSM	9	
Addresses and Identifiers – Network	Aspects in GSM – Mobi	litv Ma	nageme	ent –	-	
GSM Frequency Allocation – Personal	Communication Service –	Authen	ticatior	and		
Security						
Unit 3 GPRS, CDMA AND 3G COM	IMUNICATIONS					
General Packet Radio Service: GP	PRS network architecture	e- GPR	S net	work		
operations - Data services in GPRS	- Applications - Limitat	ions –	Billing	and		
Charging – EDGE – Wireless Applicat	ion Protocol – CDMA and	3G: Int	roducti	on –	9	
CDMA versus GSM – Wireless Data -	-Third generation network	s – App	lication	is on		
3G	C					
Unit 4 MOBILE ADAPTIVE	COMPUTING & I	DATA	DIS	SEMI	NATIC)N
MANAGEMENT						
Mechanisms for Adaptation – How to	develop adaptations in app	olication	s – Sup	oport		
for building adaptive mobile application	ations - Mobility Manag	gement:	Loca	ation		
Management Principles and Technique	es – Location management	case stu	idies -	Data	9	
Dissemination and Management: Chal	llenges – Data Disseminat	ion – N	Iobile	Data		
Caching – Mobile Cache Maintenance	schemes – Mobile Web Cae	ching				
Unit 5 PERVASIVE COMPUTING	AND MOBILE MIDDLE	WARE				
Ubiquitous or Pervasive computing	-Context: definitions - ty	pes of	contex	ts –		
Context-aware computing and appl	ications – middleware	support	- Me	obile		
middleware – Adaptation – Agents – S	ervice discovery – Middley	ware for	applica	ation	0	
development: Adaptation and Agent	ts-Human-Computer Inter	rface in	Perva	asive	7	
Environments - HCI Service and In	teraction Migration - Co	ntext- I	Driven	HCI		
Service Selection						

TOTAL: 45 PERIODS

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1 : outline the basic problems, performance requirements of pervasive computing applications, and the trends of pervasive computing and its impacts on future computing applications and society

CO2 : understand about various recent and emerging technologies

CO3 : outline the basics of GPRS and its applications

CO4 : develop an attitude to propose solutions with comparisons for problems related to pervasive computing system through investigation

CO5 : understand middleware applications

CO PO MAPPING

		1 0												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		2									3	3	
CO2	3	2	3									3	2	
CO3	3	2	2		2							3	3	
CO4	3											2		
CO5	2		2									3		2

REFERENCE BOOKS:

1. AsokeK.Talukder, Hasan Ahmed, Rooba. R. Yavagal, "Mobile Computing Technology, Applications and Service Creation", Second Edition, Tata McGraw Hill, 2010

- 2. Frank Adelstein, Sandeep K.S Gupta , Golden G. Richard III, Loren Schwiebert -Fundamentals of Mobile and Pervasive Computing, Tata McGraw-Hill Education Private Limited, Seventh reprint, 2010
- 3. JochenSchiller,"Mobile Computing, Wireless Transmission Approach and its Applications", Second Edition, Pearson Education, 2011
- 4. Pattnaik, Prasant Kumar, RajibMall,"Fundamentals of Mobile Computing", Eastern Economy Edition, PHI Learning Private Limited, 2012
- 5. JochenBurkhardt, Pervasive Computing: Technology and Architecture of Mobile Internet Applications, Addison-Wesley Professional; 3rd edition, 2007

				CS624	209: \$	Softwa	are Ro	eliabil	ity an	d Metr	rics			
Course	Cates	gory:]	Progr	amme	e	G	T				L	Т	Р	C
Electiv	e	•	U			Cot	irse T	ype: 1	Theory	Ÿ	3	0	0	3
COUR	SE OE	JEC	TIVES	5:										
• Lea	rn diff	erent of	definit	ions o	of softv	ware q	uality			•				
• Kno	ow diff	erent	notion	s of d	efects	and c	lassify	them						
• Und	lerstan	d the	basic t	echni	aues o	f data	collec	tion a	nd hov	v to ap	plv thei	n		
• Lea	rn soft	ware	metric	s that	define	relev	ant me	etrics i	n a rig	orous	wav.			
• Gai	n conf	idence	e in ult	ra-hig	h relia	bility				,				
Unit 1	INTR			N TO	SOFT	WAF	RE RF	ELIAF	BILIT	Y				
Basic C	loncen	ts - F	ailure	and F	Faults -	– Env	ironm	ent –	Availa	– bility –	-Model	ing _119	ses –	
require	ments	reliabi	ility m	netrics	– des	ign &	code	reliabi	ility m	etrics -	- testin	g reliat	oility	9
metrics						-8				••••		8	Jiiioj	-
Unit 2	COM	PARIS	SON (OF SC)FTW	ARE	REL	ABII	JTY I	MODE	LS		I	
Concep	$\frac{1}{ts - G}$	eneral	Mode	el Cha	racteri	stic –	Histor	rical D)evelor	oment	of mod	els – M	odel	
Classification scheme – Markovian models – General concepts – General Poisson Type Models – Binomial Type Models – Poisson Type models – Fault reduction factor for														
Models	– Bin	omial	Type	Mode	els – I	Poisso	n Typ	e mod	els - 1	Fault r	eductio	n facto	r for	9
Poisson	Type	mode	ls				<i>.</i> , , , , , , , , , , , , , , , , , , ,						_	
Unit 3 COMPARISON OF SOFTWARE RELIABILITY MODELS														
Comparison Criteria – Failure Data – Comparison of Predictive Validity of Model														
Groups	– Ree	comm	ended	Mode	els – (Comp	arison	of Ti	me D	omains	– Cal	endar]	Гime	0
Modeli	ng –	Limit	ing R	Resour	ce Co	oncept	t – R	lesour	ce Us	sage n	nodel -	- Reso	urce	9
Utilizat	ion – (Calend	lar Tir	ne Est	imatic	on and	confi	dence	Interv	als				
Unit 4	FUNE	DAME	INTA	LS OI	F ME	ASUR	EME	NT					L.	
Measur	ement	s in So	oftwar	e Eng	ineeri	ng – S	Scope	of So	ftware	metric	s – Me	easurem	nents	0
theory -	- Goal	based	Fram	ework	x – Sof	ftware	Meas	ureme	nt Val	idation	l			9
Unit 5	MEAS	SURI	NG SO	OFTV	VARE	PRO	DUC	Г						
Measur	ement	of In	ternal	Produ	ict At	tribute	es - S	ize an	d Stru	cture -	- Exter	nal Pro	duct	
Attribut	tes –	Meas	ureme	ent of	Qua	lity –	Soft	ware	Reliat	oility:	Measur	ement	and	9
Predicti	on					-				-				
											T	DTAL:	45 PE	RIODS
COUR	SE OI	TCO	MES	At the	e end o	of the a	course	the st	udent	will he	able to			
CO1 · Understand basic concepts of software reliability														
CO2 : Perform some simple statistical analysis relevant to software measurement data														
CO3 : Use from practical examples both the benefits and limitations of software metrics for											or			
quality	contro	and a	assura	nce				its un	., 111111		51 5011 1	, ar e 11K		-
CO PO	MAP	PING												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	-	_	_	-	-	_	-		-	-	2	-
CO2	-	-	-	3	2	-	-	-	-	2	-	-	-	2
CO3	-	-	2	2	-	-	-	-	-	2	-	-	-	2

REFERENCE BOOKS:

- 1. John D. Musa, —Software Reliability Engineering, Tata McGraw Hill, 1999
- John D. Musa, Anthony Iannino, KazuhiraOkumoto, —Software Reliability Measurement, Prediction, Application, Series in Software Engineering and Technologyl, McGraw Hill, 1987
- 3. Norman Fenton, James Bieman, —Software Metrics: A Rigorous and Practical Approach^{II}, 3rd edition, CRC Press, 2015 25 IF5191 AD

CS624210:	Fuzzy logic and its Applicatio	ns			
Course Category: Programme		L	Т	Р	С
Elective	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:					
• To know about the basics of Fuzz	y logic.				
• To understand the basics concept of	of Fuzzy systems.				
• To understand about the principles	of Fuzzy set theory.				
• To study about the features of Fuzz	zy logic for modeling.				
• To know about the details of applie	cations of Fuzzy Logic				
Unit 1 INTRODUCTION TO FUZZ	Y LOGIC PRINCIPLES				
Basic concepts of fuzzy set theory – c – Crisp relations – Fuzzy relational e systems – propositional logic – Infere – fuzzy inference – fuzzy rule based sy	pperations of fuzzy sets – prop quations – operations on fuzz nce – Predicate Logic — fuzz ystems – fuzzification and defi	perties c zy relati y logic uzzifica	of fuzzy ons – f princip tion – t	sets uzzy les – ypes	9
Unit 2 FUZZY SYSTEMS	, 			51	
Introduction to Fuzzy Logic, Classica Fuzzy Relations -Membership Func Fuzzy Measures - Fuzzy Rule Base Fuzzy Decision Making	Il Sets and Fuzzy Sets - Clas tions -Defuzzification - Fuz and Approximate Reasoning	sical Re zy Arit g - Intr	elations hmetic oductic	and and on to	9
Unit 3 FUZZY SET THEORY					
Fuzzy set theory – Fuzzy sets – Ope cardinality, union and intersection, points, aggregation, projection, comp Fuzzy membership functions	eration on fuzzy sets – Scala complement (Yager and Su position, cylindrical extension	r cardin geno), n, fuzzy	ality, f equilib v relatio	uzzy rium on –	9
Unit 4 FUZZY LOGIC FOR MODI	ELING AND CONTROL				
Modelling of non-linear systems usi controller – Fuzzification – Knowledg – Adaptive fuzzy systems – Familiariz	ng fuzzy models – TSK mo e base – Decision making log ation with fuzzy logic toolbox	odel –] ic – Def	Fuzzy uzzific:	logic ation	9
Unit 5 FUZZY LOGIC APPLICAT	IONS				
Fuzzy logic controllers – principles industrial applications of FLC adapt Multiobjective decision making – fu pattern recognition – image processing	 review of control system ive fuzzy systems – fuzzy uzzy classification – means g applications 	s theory decision clusteri	y – van 1 makin ng – f	rious ng – uzzy	9
		T	OTAL:	45 PE	RIODS
COURSE OUTCOMES: At the end o	f the course, the student will be	e able to			
CO1 : know the basics principles of Fu	ızzy Logic				
CO2 : know and study the concepts of	Fuzzy systems				
CO3 : Understand the concept of Fuzz	y sets and its relations				
CO4 : To learn the importance of mod	leling in Fuzzy logic				
CO5 : Analyze about the fuzzy logic a	pplications				
CO PO MAPPING					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2										1	
CO2	2			2	3									
CO3	2	2											1	
CO4			2	2										
CO5	2						3							

REFERENCE BOOKS:

- 1. S.Rajasekaran, G.A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Algorithm, Synthesis and Applications ", PHI Learning Pvt.Ltd., 2017
- 2. Timothy J. Ross, "Fuzzy Logic with Engineering Applications", McGraw Hill Inc., 2000
- 3. Zhang Huaguang and Liu Derong, "Fuzzy Modeling and Fuzzy Control Series: Control Engineering", 2006
- 4. Klir.G, Yuan B.B. "Fuzzy sets and Fuzzy Logic", Prentice Hall of India private limited, 1997
- 5. George J. Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic-Theory and Applications", Prentice Hall, 1996

PROGRAMME ELECTIVE -III [SEM-II]

CS624211: Softw	vare Quality Assurance and	Testing	T D		
Course Category: Programme		L	Т	Р	С
Elective	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:			L L		44
• To understand the basics of testing,	, test planning & design and te	st team	organiza	tion	
• To study the various types of test in	the life cycle of the software	produc	t.		
• To build design concepts for system	n testing and execution	1			
• To learn the software quality assura	ance metrics, defect prevention	n techn	iques		
• To learn the techniques for quality	assurance and applying for ap	plicatio	ns		
Unit 1 SOFTWARE TESTING - CO	NCEPTS, ISSUES, AND T	<u>ECHNI</u>	OUES		
Ouality Revolution. Verification and	Validation, Failure, Error.	Fault. a	and Def	ect.	
Objectives of Testing, Testing Activit	ties, Test Case Selection Wh	ite-Box	and Bl	ack	
test Planning and design, Test Tools	and Automation, . Power o	f Test.	Test Te	eam	9
Organization and Management-Test	Groups, Software Quality	Assura	nce Gr	oup	-
,System Test Team Hierarchy, Team B	uilding			1	
Unit 2 SYSTEM TESTING	C				
System Testing - System Integration	Techniques-Incremental, Top	Down	Bottom	Up	
Sandwich and Big Bang, Software	and Hardware Integration,	Hardw	are Des	ign	
Verification Tests, Hardware and Soft	ware Compatibility Matrix Te	est Plan	for Syst	em	
Integration. Builtin Testing. function	nal testing - Testing a Fur	nction i	in Cont	ext.	9
Boundary Value Analysis, Decision	n Tables. acceptance testin	g - S	election	of	
Acceptance Criteria, Acceptance Test	Plan, Test Execution Test. so	oftware	reliabili	ty -	
Fault and Failure, Factors Influencing S	Software, Reliability Models				
Unit 3 SYSTEM TEST CATEGORI	ES				
System test categories Taxonomy of S	ystem Tests, Interface Tests I	Functior	nality Te	sts.	
GUI Tests, Security Tests Feature T	ests, Robustness Tests, Bour	ndary V	/alue To	ests	
Power Cycling Tests Interoperability	Tests, Scalability Tests, Stres	ss Tests	, Load	and	
Stability Tests, Reliability Tests, Regr	ession Tests, Regulatory Test	ts. Test	Generat	ion	
from FSM models- State-Oriented	Model. Finite-State Machine	e Trans	sition T	our	
Method, Testing with State Verifi	cation. Test Architectures-	Local,	distribu	ted,	9
Coordinated, Remote. system test	design- Test Design Fac	ctors R	lequirem	ent	
Identification, modeling a Test Design	Process Test Design Prepared	lness, M	letrics, 7	Test	
Case Design Effectiveness. system t	test execution- Modeling De	efects,	Metrics	for	
Monitoring Test Execution .Defect H	Reports, Defect Causal Anal	ysis, B	eta test	ing,	
measuring Test Effectiveness					
Unit 4 SOFTWARE QUALITY					
Software quality - People's Qualit	y Expectations, Framework	and as	ISO-91	26,	
McCall's Quality Factors and Crite	eria – Relationship. Quality	Metri	cs. Qua	lity	9
Characteristics ISO 9000:2000 Softv	vare Quality Standard. Matu	irity m	odels-	l'est	-
Process Improvement, Testing Maturity	Model				
Unit 5 SOFTWARE QUALITY ASS	SURANCE	•		- 1	
Quality Assurance - Root Cause Ar	halysis, modeling, technolog	ies, sta	ndards	and	•
methodologies for defect prevention. F	ault Tolerance and Failure Co	ontainm	ent - Sa	tety	9
Assurance and Damage Control, Haz	zard analysis using fault-tree	es and	event-tr	ees.	

Comparing Quality Assurance Techniques and Activities. QA Monitoring and Measurement, Risk Identification for Quantifiable Quality Improvement. Case Study: FSM-Based Testing of Web-Based Applications

TOTAL: 45 PERIODS

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1 : Perform functional and non-functional tests in the life cycle of the software product

CO2 : Understand system testing and test execution process

CO3 : Identify defect prevention techniques and software quality assurance metrics

CO4 : Apply techniques of quality assurance for typical applications

CO5 : Analyze the Quality of Software

CO PO MAPPING

0010														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	2	-	1	-	-	-	-	-	-	-	-	-
CO2	3	2	-	-	-	-	-	-	-	3	-	-	-	-
CO3	-	-	3	2	-	-	-	-	-	-	-	-	-	-
CO4	-	-	-	2	2	-	-	-	-	-	-	-	-	-
CO5														

REFERENCE BOOKS:

1. Software Testing And Quality Assurance-Theory and Practice, Kshirasagar Nak Priyadarshi Tripathy, John Wiley & Sons Inc,2008

2. Software Quality Engineering: Testing, Quality Assurance, and Quantifiable Improvement, Jeff Tian, John Wiley & Sons, Inc., Hoboken, New Jersey. 2005

3. Software Quality Assurance - From Theory to Implementation, Daniel Galin, Pearson Education Ltd UK, 2004

4. Software Quality Assurance, MilindLimaye, TMH, New Delhi, 2011

CS6242	12 – Cognitive Computing				
Course Category: Programme	Correct Trees Theorem	L	Т	Р	С
Elective	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:					
• To appreciate the need of Cognitive	e Computing Techniques.				
• To learn different types of sets whi	ch can handle imprecise data	values			
• To develop systems which have lea	arning capabilities.				
• To learn techniques to optimize the	results and find the optima				
Unit 1 Psychology and Neuroscience					
Philosophy: Mental-physical Relation	- From Materialism to Menta	al Scien	ce – De	tour	
before the naturalistic turn – The Ph	nilosophy of Science – The	Mind in	Cogn	itive	
Science – Logic and the Sciences of	the Mind – Psychology: Pl	ace of	Psvcho	logy	0
within Cognitive Science -Science	of Information Processing	– Neu	roscier	nces:	9
Cognitive Neuroscience – Perception	-Decision – Learning and M	emory -	- Lang	uage	
Understanding and Processing	6	5	U	0	
Unit 2 Probabilistic Programming Lan	iguage				
Web PPL Language – Syntax – Using	Javascript Libraries – Manit	oulating	probab	oility	
types and distributions – Finding I	nference – Exploring rando	om con	putatic	on –	•
Coroutines: Functions that receive	continuations -Enumeratio	n – C	ther b	basic	9
computation					
Unit 3 Fuzzy sets and fuzzy logic					
Introduction to fuzzy logic, classic	al and fuzzy sets, overvie	ew of	fuzzy	sets,	
membership function, fuzzy rule gen	eration, operations on fuzzy	sets: c	omplin	nent,	
intersection, union, combinations of	on operations, aggregation	operati	on. Fi	uzzy	9
Extension Principles, Defuzzification.	Fuzzy Rule bases, Developm	ent of F	uzzy L	ogic	-
based Expert Systems. CASE STUDIE	ES			C	
Unit 4 Neural Networks & Rough Sets					
Overview of biological neurons, Math	ematical model of Neuron, Pe	erceptro	n and N	/ulti	
Layer Perceptron, Learning in Artific	ial Neural Networks; Superv	ised, U	nsuperv	vised	
and Competitive Learning paradigms;	Learning rules and Functions	, Back	propaga	ation	
algorithm, Rough Sets. Upper and Lov	ver Approximations, Boundar	y Regio	n, Deci	sion	9
Tables and Decision Algorithms. Pr	roperties of Rough Sets. Ro	ough M	lembers	ship,	
Reducts. Discernibility Matrix and D	iscernibility Functions. Gene	ration o	f Infer	ence	
Rules					
Unit 5 Evolutionary Algorithms and H	Iybrid Algorithms				
Introduction, Evolutionary algorithm	s - Genetic Algorithm: His	story, te	erminol	ogy,	
biological background, creation of offs	spring, working principles of	genetic	algoritl	nms,	
fitness function, Roulette wheel selec	tion, Boltzmann selection, cr	coss ove	r muta	tion,	0
inversion, deletion, and duplication,	generation cycle, Swarm	Optimiz	ation –	Part	9
Swarm Optimization and Ant Co	lony Optimization. Differe	ntial E	volutio	nary	
Algorithm					
		TC)TAL:	45 PE	RIODS

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1 : Understand the Philosophy of Science

CO2 : Able to realize importance and apply Computing techniques for real world problem solving

CO3 : Able to represent the imprecise information using sets and develop inference systems based on these

CO4 : Develop learning systems

CO5 : Learn and practice various optimization algorithms for real world problems solving

CO PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2											
CO2	2	2								3				
CO3	3		2											
CO4	2			3										
CO5					3									

REFERENCE BOOKS:

1. Robert A. Wilson, Frank C. Keil, "The MIT Encyclopedia of the Cognitive Sciences", The MIT Press, 1999

2. Noah D. Goodman, Andreas Stuhlmuller, "The Design and Implementation of Probabilistic Programming Languages", Electronic version of book, https://dippl.org/

3. Noah D. Goodman, Joshua B. Tenenbaum, The ProbMods Contributors, "Probabilistic Models of Cognition", Second Edition, 2016, https://probmods.org

CS624213: S0	OCIAL NETWORK ANALY	YSIS			
Course Category: Programme	Course Turner Theory	L	Т	Р	С
Elective	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:					
• Gain knowledge about the current	Web development and emerge	ence of S	Social V	Neb	
• Study about the modeling, aggrega	ting				
• Learn knowledge representation of	Semantic Web				
• Learn about the extraction and min	ing tools for Social networks				
• Gain knowledge on Web personali	zation and Web Visualization	of Soci	al netw	orks	
Unit 1INTRODUCTION TO SOCIAL	NETWORK ANALYSIS				
Introduction to Web - Limitations of a	current Web – Development	of Sema	ntic W	eb –	
Emergence of the Social Web - Netw	vork analysis - Development	of Soci	al Netv	work	0
Analysis - Key concepts and measur	es in network analysis - Ele	ctronic	sources	s for	9
network analysis - Electronic discussion	on networks, Blogs and online	commu	nities		
Unit 2 MODELLING, AGGREGATI	NG AND KNOWLEDGE RE	PRESE	NTATI	ON	
Ontology and their role in the S	Semantic Web - Ontology-	based	Knowl	edge	
Representation - Ontology languages	s for the Semantic Web -	RDF a	nd OW	/L -	
Ontological representation of social i	ndividuals, Ontological repre	esentatio	on of so	ocial	9
relationships, Aggregating and reas	soning with social networl	k data,	Adva	nced	
Representations					
Unit 3 EXTRACTION AND MINING	G COMMUNITITES IN WEB	SOCIA	AL NET	WOR	KS
Extracting evolution of Web Commu	nity from a Series of Web A	Archive	- Detec	cting	
Communities in Social Networks	- Definition of Commun	nity -	Evalua	ating	
Communities - Methods for Comm	unity Detection & Mining	- App	lication	s of	9
Community Mining Algorithms - To	ols for Detecting Communiti	ies Soci	al Netv	vork	
Infrastructures and Communities					
Unit 4 PREDICTING HUMAN BEHA	AVIOR AND PRIVACY ISS	UES			
Understanding and Predicting Human	Behaviour for Social Comm	unities	- User 1	Data	
Management, Inference and Distribution	on - Enabling New Human Ex	perienc	es - Re	ality	
Mining - Context-Awareness - Privac	cy in Online Social Network	s - Trus	st in Or	nline	9
Environment - Trust Models Based o	on Subjective Logic - Trust I	Network	Analy	sis -	
Combining Trust and Reputation					
Unit 5 VISUALIZATION AND APPI	LICATIONS OF SOCIAL NE	TWOR	KS		
Graph Theory- Centrality- Clustering	- Node-Edge Diagrams, Ma	trix rep	resenta	tion,	
Visualizing Online Social Networks,	Visualizing Social Networks	with M	atrıx-B	ased	0
Representations- Matrix + Node-	Link Diagrams, Hybrid	Represe	entation	s -	9
Applications - Covert Networks - C	ommunity Welfare - Collabo	oration	Networ	·ks -	
Coultation Networks					
		TO	DTAL:	45 PE	RIODS
COURSE OUTCOMES: At the end o	f the course, the student will be	e able to			

CO1 : Apply knowledge for current Web development in the era of Social Web CO2 : Model, aggregate and represent knowledge for Semantic Web

CO3 : Design extraction and mining tools for Social networks														
CO4 : Develop personalized web sites and visualization for Social networks														
CO5 : Design Web personalization and Visualization for Social networks														
CO PO MAPPING														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02													
CO1 3 3														
CO2 2 2														
CO3	CO3 3 3 2													
CO4	CO4 2 2													
CO5	CO5 2 1 1 1													
REFER	REFERENCE BOOKS:													
1. Pete	er Mik	а, —S	ocial l	Netwo	rks an	d the	Semar	ntic W	ebl, Fi	irst Edi	tion, Sp	oringer	2007	
2. Bor	koFur	ht, —ł	Handb	ook ot	f Socia	al Netv	work [Гесhno	ologie	s and A	pplicat	ions , 1	st Editi	ion,
Spri	nger,	2010							U		11			,
3. Peter Mika, —Social networks and the Semantic Webl, Springer, 1st edition 2007														
4. Dion Goh and Schubert Foo, —Social information Retrieval Systems: Emerging														
Tec	hnolog	gies an	ld App	olicatio	ons for	r Seard	ching	the We	eb Eff	ectively	y∥, IGI	Global	Snippe	t, 2008

CS62421	4: Data Mining Techniques				
Course Category: Programme	Course Type: Theory	L	Т	Р	С
Elective	Course Type. Theory	3	0	0	3
COURSE OBJECTIVES:					
Analyze various data mining tasks to f	ind relevant patterns from larg	ge datab	ases		
Unit 1 Introduction					
Introduction: Challenges, The Origin	s of Data Mining, Data Minin	g Tasks			
Data: Types of Data, Data Quality,	Data Preprocessing, Measure	s of Sir	nilarity	and	9
Dissimilarity, OLAP and Multidimens	ional Data Analysis				
Unit 2 Basic of Classification					
Classification: Preliminaries, General	l Approach to Solving a Clas	ssificatio	n Prob	lem,	
Decision Tree Induction, Model C	Overfitting, Evaluating the	Perform	ance of	of a	9
Classifier, Methods for Comparing Cla	assifiers, Rule-Based Classifie	er			
Unit 3 Classification techniques					
Nearest-Neighbor classifiers, Bayesian	n Classifiers, Artificial Neura	l Netwo	rks (Al	NN),	
Support Vector Machine (SVM), E	Ensemble Methods, Class In	nbalanc	e Prob	lem,	9
Multiclass Problem					
Unit 4 Association Analysis					
Problem Definition, Frequent Iten	nset Generation, Rule Gen	neration	, Com	pact	
Representation of Frequent Itemsets,	Alternative Methods for G	eneratin	g Freq	uent	
Itemsets, FP-Growth Algorithm, Evalu	uation of Association Patterns	s, Effect	of Ske	ewed	9
Support Distribution, Handling C	Categorical Attributes, Har	ndling	Contin	uous	
Attributes, Handling a Concept Hierard	chy				
Unit 5 Cluster Analysis				•	
Overview, K-means, Agglomerative	Hierarchical Clustering,	DBSCA	N, Ch	uster	0
Evaluation, Characteristics of Data, Cl	usters and Clustering Algorith	hms			9
		T	DTAL:	45 PE	RIODS
COURSE OUTCOMES: At the end o	f the course, the student will be	e able to			
CO1 : Explain the steps in KDD, Iden	tify various pre-processing te	chnique	s and C	omput	e
similarity among objects and differenti	iate relational & multidimensi	ional dat	a mode	els	
CO2 : Identify a classification model to	o classify unknown data objec	cts based	l on dif	ferent	
classification techniques					
CO3 : Illustrate the use of advanced cla	assification models for predic	tion			
CO4 : Find associations and correlation	ns among items by mining fre	quent pa	atterns	from	
transactional databases					
CO5 : Evaluate clusters formed based	on various clustering techniqu	ies			

CO PO MAPPING														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	-	-	-	-	-	-	-	-	-	-
CO2	3	3	3	3	3	-	-	-	-	-	-	-	-	-
CO3	3	3	3	3	3	-	-	-	-	-	-	-	-	-
CO4	3	3	3	3	3	-	-	-	-	-	-	-	-	-
CO5	3	3	3	3	3	-	-	-	-	-	-	-	-	-
REFER	REFERENCE BOOKS:													
1. Pang (201	1. Pang-Ning Tan, Vipin Kumar, Michael Steinbach, "Introduction to Data Mining", (2017) Pearson Education													
2. Jiaw Edit	vei Ha ion(2	n &M 011), 1	icheliı India	neKan	nber a	nd Jai	n Pei ,	Data 1	Minin	g Conc	epts an	d Tech	niques	, Third
3. Mar	garet	H Dun	ham,	Data N	Mining	g Intro	ductor	y and	advar	nced top	pics, P	earson	educati	on
4. Aru	n K Pı	. ijari	Data N	lining	Tech	niques	, (201	7) ,Un	iversi	ty Press	5			
5. Sam	5. Sam Anahory, Dennis Murray, Data Warehousing in the Real World, Pearson Education													
6. PaulrajPonnaiah, Data Warehousing Fundamentals, Wiley Student ed.														
7. http	://web	.stanfo	ord.ed	u/class	s/cs34	5a/								

CS62421	5: Block Chain Technologies				
Course Category: Programme		L	Т	P	C
Elective	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:					
• To learn the various cryptography	primitives used in block chain	l .			
• To study the design principles of b	lock chain.				
• To understand the various consense	ıs algorithms.				
• To study the block chain in networ	king.				
• To learn the enhancements of block	c chain technologies				
Unit 1 CRYPTOGRAPHY IN BLOC	KCHAIN				
Blockchain Definitions – Blockchain	n versus Databases – Histor	ry – M	otivatio	on –	
Characteristics – Types – Overview	- Hashing in Blockchain -	Linking	g block	is in	
blockchain – Linking blocks using	g SHA256 – Block struct	ure –	Blockc	hain	9
functionality – Creating Blockchain	- Byzantine failure problem	n in bl	ockcha	in –	
Digital signatures in blockchain – Bloc	kchain wallets				
Unit 2 BLOCKCHAIN DESIGN PRIN	NCIPLES				
Networked Integrity – Distributed Po	wer- Value as Incentive – Se	ecurity -	– Priva	cy –	
Rights Preserved – Inclusion – Cent	ralized Registries versus Dis	tributed	Ledge	ers –	9
Public versus Private Ledgers – Trans	parency as a Strategic Risk –	- Transp	arency	as a	-
Strategic Asset - Zero Knowledge Prod	ofs				
Unit 3 CONSENSUS ALGORITHMS					
Proof of Work – Pure Stake Based Co	nsensus – Proot of Stake - Le	ased Pro	bot of S	stake	
– Delegated Proof of Stake – Hybrid F	orm of PoS and PoW – Practi	cal Byz	antine I	fault	9
Tolerance – Ripple – Tendermint – Pro	bot of Elapsed Time – Proof	of Activ	∕ity – P	roof	
of Burn – Hyperledger Fabric					
Unit 4 NET WORKING IN BLOCK C	HAIN		D '1	1	
Peer – to –peer Networking – Network	K Discovery – Block Synchro	nization	– Bull	ding	
a simple Blockchain in P2P Network	x = v and a ling new Block =	Selecti	ng Lon	igest	0
Tastnat Pastast Plaskabain	in 5G Plockshein in So	ockenal	ii inetw	Orks	9
– Testilet – Reglest – Diockchall Blockshain for IoT	$111 \ 30 = \mathbf{B} 10 \mathbf{c} \mathbf{k} \mathbf{c} \mathbf{n} \mathbf{a} \mathbf{n} 11 30$	cial ne	LWOIKI	ig –	
Unit 5 BLOCKCHAIN OPTIMIZATI	ONS AND ENHANCEMEN'	TS			
Blockchain Ontimizations – Transacti	on Exchange – Off-chain Tr	ansactic	ns – B	lock	
size improvements – Blockchain enh	uncements – Sharding – Evol	lution of	f conse	nsus	
algorithm – Proof of Stake – Proof of	Activity – Byzantine Fault To	olerance	Conse	nsus	
Models – Proof of Elapsed Time –	Cross-chain Protocol – Priva	cv Enh	anceme	nt –	9
Blockchain Security – Transaction Se	curity Model – Decentralized	1 Securi	tv Mod	lel –	
Attacks on Blockchain			5		
		T	OTAL:	45 PE	RIODS
COURSE OUTCOMES: At the end o	f the course, the student will be	e able to			
CO1 · Implement the required errentee	ranhy primitivas for block she	in aveta	100 G		

CO1 : Implement the required cryptography primitives for block chain systems CO2 : Work with various block chain design principles

CO3 : Implement with various consensus algorithms														
CO4 : I	CO4 : Equip networks with the various block chain techniques													
CO5 : V	CO5 : Work with block chain optimization techniques													
CO PO	CO PO MAPPING													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	CO1 3 2													
CO2	CO2 2 2 3 1													
CO3	CO3 3 2													
CO4	CO4 2 3													
CO5	CO5 2 3 </td													
REFE	RENC	E BO	OKS:											
1. Kos	shik Ra	aj, "Fo	undat	ions o	f Bloc	kchair	n", Pao	ckt Pu	blishei	rs, 2019)			
2. S. S	Shukla,	M. D	hawar	1, S. S	harma	and S	. Ven	katesa	n, "Bl	ockcha	in Tech	nology	•	
Cry	ptocur	rency	and A	pplica	tions"	, Oxfo	ord Ur	niversi	ty Pres	ss, 201	9			
3. Jost	h Thor	npson,	"Bloo	ckchai	n: The	e Bloc	kchair	ı for E	Beginn	ings, G	uild to	Blockc	hain	
Tec	hnolog	gy and	Block	cchain	Progr	ammi	ng", C	Create	Space	Indepe	ndent I	Publish	ing Plat	form,
201	2017													
4. And	4. Andreas M. Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies",													
Ore	illy M	edia, 1	st Edi	ition, 2	2014				-		_			

PROGRAMME ELECTIVE - IV

CS624216 - Agent Based Systems													
Course Category: Programme Float	ivo	Cour	se Ty	pe:		L	Τ	Р	С				
Course Category: Frogramme Elect	ive	Theo	ory			3	0	0	3				
COURSE OBJECTIVES:													
• To define the algorithmic foundation of agents and multi agent systems.													
• To explain theoretical foundations of agent based system.													
• To apply Bayesian networks for probabilistic reasoning.													
• To create logical agents to do inference using first order logic.													
• To understand the higher level Agents concepts acquired over the 5Units of the													
for improved employability skills													
UNIT 1: INTRODUCTION													
Definitions - Foundations - History - In	ntelli	gent A	gents-	Proble	em Sol	ving-S	earchin	g -					
Heuristics -Constraint Satisfaction Pro	blem	ıs - Ga	me pla	iying.									
UNIT 2: KNOWLEDGE REPRESE	NTA	TION	I						9				
Logical Agents-First order logic-First	Orde	r Infer	ence-l	Jnifica	ation-C	hainin	g- Reso	olution					
Strategies-Knowledge Representation-	-Obje	ects-Ac	ctions-	Event	s.								
UNIT 3: PLANNING PROBLEMS									9				
Planning Problem-State Space Search-Partial Order Planning-Graphs-Nondeterministic													
Domains-Conditional Planning-Continuous Planning-MultiAgent Planning.													
UNIT 4: AGENTS UNDER UNCER	TAI	NTY							9				
Acting under uncertainty – Probability	v Nota	ation-I	Bayes I	Rule a	nd use	- Baye	sian						
Networks-Other Approaches-Time and	d Uno	certain	ty-Ter	nporal	Mode	ls- Util	ity The	eory -					
Decision Network – Complex Decision	ns.												
UNIT 5: HIGHLEVEL AGENTS									9				
Knowledge in Learning-Relevance Inf	forma	tion-S	tatistic	cal Lea	arning	Metho	ds-Rein	forcen	nent				
Learning-Communication-Formal Gra	mma	r-Aug	mentee	d Grar	nmars-	Future	of AI.						
						TC)TAL:	45 PE	RIODS				
COURSE OUTCOMES: At the end o	of the	course	e, the st	udent	will be	able to)						
CO1: Define the algorithmic foundation	on of	agents	and n	nulti ag	gent sy	stems.							
CO2: Analyze the theoretical foundation	ons o	of agen	t based	d syste	em.								
CO3: Apply Bayesian networks for pro	obabi	ilistic 1	reason	ing.									
CO4: Create logical agents to do infere	ence	using	first or	der lo	gic.								
CO5: Understand the higher level Age	ents												
CO-PO MAPPING													
	DOC	D 07	DOO	DOO	DO10	DO11	DO10	DCO1	DGOO				
PO1 PO2 PO3 PO4 PO5	PO6	PO/	PO8	PO9	PO10	2	PO12	PSOI	PSO2				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	-	-	-	2	-	-	-	-				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	-	-	-	2	-	-	-	-				
CO4 2 2 2	-	-	-	-	2	-	-	-	-				
CO5 2 2 2	-	-	-	-	2	3	2	-	-				
1- low, 2 - mediu	m, 3	- high	i, '-' n	o cori	relation	n							

REFERENCE BOOKS:

1.Stuart Russell and Peter Norvig, "Artificial Intelligence - A Modern Approach",2nd Edition, Prentice Hall, 2002

2. Michael Wooldridge, "An Introduction to Multi Agent System", John Wiley, 2002.

3. Patrick Henry Winston, Artificial Intelligence, 3rd Edition, AW, 1999.

WEB RESOURCES:

1.https://warwick.ac.uk/fac/sci/dcs/teaching/modules/cs404/

2.https://link.springer.com/chapter/10.1007/978-3-642-17625-8_1

CS624217 - Machine Learning Т **Course Category: Programme** L Р С **Course Type: Theory** Elective 3 0 0 3 **COURSE OBJECTIVES:** To introduce the need for machine learning for various problem solving • To study the various supervised, semi-supervised and unsupervised learning • algorithms in machine learning To learn the latest trends in machine learning To design appropriate machine learning algorithms for problem solving To Analyse the appropriate machine learning approaches for various types of problems concepts acquired over the 5Units of the subject for improved employ ability skills **UNIT 1: INTRODUCTION** 9 Learning Problems - Perspectives and Issues - Concept Learning - Version Spaces and Candidate Eliminations – Inductive bias – Decision Tree learning – Representation – Algorithm - Heuristic Space Search. **UNIT 2: NEURAL NETWORKS AND CENETIC ALGORITHMS** 9 Neural Network Representation – Problems – Perceptrons – Multilayer Networks and Back Propagation Algorithms – Advanced Topics – Genetic Algorithms – Hypothesis Space Search – Genetic Programming – Models of Evaluation and Learning. **UNIT 3: BAESIAN AND COMPUTATIONAL LEARNING** 9 Bayes Theorem – Concept Learning – Maximum Likelihood – Minimum Description Length Principle – Bayes Optimal Classifier – Gibbs Algorithm – Naïve Bayes Classifier – Bayesian Belief Network - EM Algorithm - Probability Learning - Sample Complexity - Finite and Infinite Hypothesis Spaces – Mistake Bound Model. **UNIT 4: INSTANT BASED LEARNING** 9 K- Nearest Neighbour Learning – Locally weighted Regression – Radial Basis Functions – Case Based Learning. **UNIT 5: REGRESSION AND TREE BASED MODELS** 9 Linear Regression - Multivariate Regression- Logistic Regression- Principal Component Regression- Decision Trees- Regression Trees. **TOTAL: 45 PERIODS COURSE OUTCOMES:** At the end of the course, the student will be able to CO1: Differentiate between supervised, unsupervised, semi-supervised machine learning approaches CO2: Discuss the decision tree algorithm and identity and overcome the problem of over fitting CO3: Discuss and apply the back propagation algorithm and genetic algorithms to various problems CO4: Apply the Bayesian concepts to machine learning

CO5: Analyse and suggest appropriate machine learning approaches for various types of problems

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	-	-	-	-	-	-	2	-	2	-	-
CO2	3	2	2	-	-	-	-	-	-	2	-	2	-	-
CO3	3	2	2	-	-	-	-	-	-	2	-	3	-	-
CO4	3	2	2	-	-	-	-	-	-	2	-	3	-	-
CO5	3	2	2	-	-	-	-	-	-	2	2	3	-	-
1- low, 2 - medium, 3 - high, '-' no correlation														
REFERENCE BOOKS:														
1.Tom M. Mitchell, —Machine Learning, McGraw-Hill Education (India) Private Limited,														
2013.														
2. Ethem Alpaydin, —Introduction to Machine Learning (Adaptive Computation and														
Machine Learning), The MIT Press 2004.														

3. Stephen Marsland, —Machine Learning: An Algorithmic Perspective, CRC Press, 2009. WEB RESOURCES:

1.https://towardsdatascience.com/beginner-friendly-resources-for-machine-learningfd198f844dc3

2.https://www.mltut.com/best-resources-to-learn-machine-learning-online/

CS624218 - Android Application Development												
Course Category: Programme	Course Tons of Theorem	L	Т	Р	C							
Elective	Course Type: Theory	3	0	0	3							
COURSE OBJECTIVES:		•										
• To know the system requirements for mobile applications												
• To generate suitable design using specific mobile development frameworks												
To generate mobile application design												
• To implement the design using specific mobile development frameworks												
 To deploy the mobile applications in marketplace for distribution concepts acquired over 												
the 5Units of the subject for i	mproved employability skills		1	1								
UNIT 1: INTRODUCTION TO M	OBILE APPLICATIONS				9							
Web Vs mobile App – Cost of Devel	opment – Myths - Mobile Appl	ications	– Mar	keting	-							
Mobile User Interface Design - Effec	tive Use of Screen – Mobile Us	sers - M	obile Iı	nforma	tion							
Design - Mobile Platforms - Tools of	Mobile Interface Design.											
UNIT 2: ANDROID USER INTER	FACE DESIGN				9							
Android Architecture – Android SI	OK Tools - Application Comp	onents	- Inter	nts - C	Content							
providers - Broadcast receivers - Services - User Interface Design - Views - View Groups -												
Layouts - Event Handling – Listen	ers – Adapters – Menus - Ac	tion Ba	rs – N	otifica	tions -							
Android Localization.												
UNIT 3: ANDROID DATA STOR	AGE				9							
Content Providers – Uri - CRUD ac	cess –Browser – CallLog – Co	ntacts –	Media	Store	- Data							
Access and Storage - Shared Prefer	ences - Storage External - Net	twork C	Connect	ion - S	SQLite							
Databases.												
UNIT 4: ANDROID NATIVE CAP	ABILITIES	F 11	1.		9							
Camera – Audio - Sensors and Blue	tooth - Playing audio/video - r	vledia re		ig - Se	nsors -							
Listening to sensor readings – Blue	tooth - Android Communication	ons - C	PS - N	NORKIN	g with							
Location Manager, working with G	n Undeteg Logistion Provide		alaatin		livily -							
Provider Finding Location	ii Opdates - Location Flovide	5	electing	g a Lu	Jeation							
LINIT 5. IOS DESIGN					0							
iPhone Craze $= iOS$ Features $= iOS$	Tools - iOS Project - Objectiv	e C Ba	sics -	Buildi	ng iOS							
App = Actions and Outlets = Delega	tes - User Interface Elements -	– Accel	eromet	er – Lo	ocation							
Handling - SOL ite Database		110001	eroniet		Jeanon							
		ТО	TAL:	45 PEH	RIODS							
COURSE OUTCOMES: At the end	of the course, the student will be	able to										
CO1: Describe the requirements for	mobile applications											
CO2: Design user interface for mobi	le applications											
CO3: Store mobile data of android a	pplications											
CO4: Evaluate native capabilities of	android applications											
CO5: Design iOS applications with	cools											

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	3	-	-	-	-	2	-	2	-	-
CO2	3	2	2	-	-	-	-	-	-	2	-	2	-	-
CO3	3	2	2	-	-	-	-	-	-	2	-	2	-	-
CO4	3	2	2	-	-	-	-	-	-	2	-	2	-	-
CO5	3	2	2	-	3	-	-	-	-	2	3	2	-	-

1- low, 2 - medium, 3 - high, '-' no correlation

REFERENCE BOOKS:

1.Jeff McWherter and Scott Gowell, "Professional Mobile Application Development", Wrox, 2012

2.Reto Meier, "Professional Android 4 Development", John Wiley and Sons, 2012

3.David Mark, Jack Nutting, Jeff LaMarche and Frederic Olsson, "Beginning iOS 6 Development: Exploring the iOS SDK", Apress, 2013.

WEB RESOURCES:

1.https://developer.android.com/studio/write/app-link-indexing

2.https://developer.android.com/guide/topics/resources/available-resources

CS624219 - Soft Computing Techniques													
Course Category: Program													
Elective	Course Type: Theory	3	0	0	3								
COURSE OBJECTIVES:					J J								
To learn the basic concepts of Soft Computing													
• To become familiar with various techniques like neural networks, genetic algorithms													
• To apply soft computing techniques to solve problems.													
• To learn the Genetic Algorithms													
• To design the hybrid System	• To design the hybrid System concepts acquired over the 5Units of the subject for												
improved employability skills					, ,								
UNIT 1: INTRODUCTION TO SOF	T COMPUTING				9								
Introduction-Artificial Intelligence-Art	ificial Neural Networks-Fuzz	y Syster	ns-Gen	etic									
Algorithm and Evolutionary Programn	ning-Swarm Intelligent System	ns-Class	sificatio	on of A	NNs-								
Mc-Culloch and Pitts Neuron Model-L	earning Rules: Hebbian and I	Delta- Po	erceptro	on Net	work-								
Adaline Network-Madaline Network.													
UNIT 2: ARTIFICIAL NEURAL NI	ETWORKS				9								
Back propagation Neural Networks - I	Kohonen Neural Network -Le	earning V	Vector	Quanti	zation -								
Hamming Neural Network - Hopfield Neural Network- Bi-directional Associative Memory -													
Adaptive Resonance Theory Neural	Networks- Support Vector	Machi	nes - S	Spike	Neuron								
Models.													
UNIT 3: FUZZY SYSTEMS					9								
Introduction to Fuzzy Logic, Classic	al Sets and Fuzzy Sets - Cl	assical	Relatio	ns and	l Fuzzy								
Relations -Membership Functions -D	efuzzification - Fuzzy Arithi	metic ar	id Fuzz	y Mea	asures -								
Fuzzy Rule Base and Approximate Rea	asoning - Introduction to Fuzz	zy Decis	ion Ma	king.	0								
UNIT 4: GENETIC ALGORITHM	Engline Ethness Ernstien	Dama	1	T. 1	<u> </u>								
Basic Concepts- working Principles -	-Encoding- Filness Function	- Kepro	Dit wie	~ 000	rotoro								
Convergence of Cenetic Algorithm	and Deletion -Mutation Ope	10101 -	DIL-WIS	e Ope	141015 -								
LINIT 5. HVRDID SVSTEMS					0								
Hybrid Systems -Neural Networks Fu	zzy Logic and Genetic -GA B	ased W	eight D	etermi	nation -								
I.R-Type Fuzzy Numbers - Fuzzy No	euron - Fuzzy BP Architectu	ire - Le	arning	in Fuz	7V RP-								
Inference by Fuzzy BP - Fuzzy ArtM	ap: A Brief Introduction - So	oft Com	unting [Fools -	- GA in								
Fuzzy Logic Controller Design - Fuzzy	V Logic Controller		Juing	10015	OTT III								
		ТС	DTAL:	45 PE	RIODS								
COURSE OUTCOMES: At the end o	f the course, the student will be	e able to											
CO1: Apply suitable soft computing te	chniques for various application	ions.											
CO2: Integrate various soft computing	techniques for complex prob	lems.											
CO3: Apply soft computing techniques by using Fuzzy algorithms to solve problems.													
CO4: Apply soft computing techniques	s by using Genetic algorithms	to solve	proble	ms.									
CO5: Design the hybrid System			-										
*													

CO-PO MAPPING

_														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	-	2	-	-	-	-	-	2	-	-	-	-
CO2	3	3	-	-	-	-	-	-	-	2	-	-	-	-
CO3	3	3	2	-	-	-	-	-	-	2	-	-	-	-
CO4	3	3	-	2	-	-	-	-	-	2	-	2	-	-
CO5	3	3	-	-	-	-	-	-	-	2	2	2	-	-
1- low, 2 - medium, 3 - high, '-' no correlation														
REFERENCE BOOKS:														
1.N.P.	1.N.P.Padhy, S.P.Simon, "Soft Computing with MATLAB Programming", Oxford University													

Press, 2015. 2.S.N.Sivanandam, S.N.Deepa, "Principles of Soft Computing", Wiley India Pvt.Ltd., 2nd Edition, 2011.

3.S.Rajasekaran, G.A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithm, Synthesis and Applications ", PHI Learning Pvt.Ltd., 2017.

WEB RESOURCES:

1.https://link.springer.com/chapter/10.1007/978-3-030-75657-4_9

2.https://cse.iitkgp.ac.in/~dsamanta/courses/sca/index.html
CS624220 - Bio-informatics												
Course Category: Programme	Course Type. Theory	L	Т	P	C							
Elective	Course Type. Theory	3	0	0	3							
COURSE OBJECTIVES:												
• To improve the programming	skills of the student											
• To let the students know the r	ecent evolution in biological sci	ience										
• To pursue higher education in	this field.											
• To practice life-long learning	of applied biological science.											
• To analyze the Perl Program	ming concepts acquired over th	ne 5Uni	its of th	ne subj	ject for							
improved employability skills	3											
UNIT 1: NTRODUCTION					9							
Introduction to Operating systems,	Linux commands, File transfe	er prote	ocols ft	p and	telnet,							
Introduction to Bioinformatics and	Computational Biology, Biolog	gical se	quence	es, Bio	logical							
databases, Genome specific database	s, Data file formats, Data life c	ycle, Da	atabase	manag	gement							
system models, Basics of Structured	Query Language (SQL).											
UNIT 2: SEQUENCE ALIGNMEN	T				9							
Sequence Analysis, Pair wise alignment	ent, Dynamic programming alg	gorithm	s for co	omputi	ng edit							
distance, string similarity, shotgun	DNA sequencing, end space	free	alignm	ent. M	Iultiple							
sequence alignment, Algorithms for	or Multiple sequence alignment	nt, Gei	nerating	g moti	fs and							
profiles, Local and Global alignme	nt, Needleman and Wunsch a	lgorithr	n, Smi	th Wa	terman							
algorithm, BLAST, PSIBLAST and I	PHIBLAST algorithms.											
UNIT 3: PHYLOGENETIC MET	HODS				9							
Introduction to phylogenetics, Dista	nce based trees UPGMA tree	s, Mole	ecular	clock	theory,							
Ultrametric trees, Parsimonious tree	s, Neighbour joining trees, tre	es base	d on n	norpho	logical							
traits, Bootstrapping. Protein Secon	dary structure and tertiary str	ucture	predict	ion m	ethods,							
Homology modeling, abinitio app	proaches, Threading, Critical	Assess	sment	of St	ructure							
Prediction, Structural genomics.												
UNIT 4: PROTEIN STRUCTURE	ANALYSIS	•			9							
Machine learning techniques: Arti	ficial Neural Networks in pr	rotein	second	ary st	ructure							
prediction, Hidden Markov Models f	or gene finding, Decision trees.	, Suppo	ort Veci	or Ma	chines.							
Introduction to Systems Biology and	Synthetic Biology, Microarray	analys	18, DN	A com	puting,							
Bioinformatics approaches for dru	g discovery, Applications of	inform	atics t	ecnniq	ues in							
genomics and proteomics: Assembly	fing the genome, SIS content	mappin	g for c	tone c	ontigs,							
LINET 5. DEDL PROCE AMMINC	inigerprinting.				0							
UNIT 5: PERL PROGRAMMING	information Data typage applan	anda	llastic		9							
Basics of PERL programming for Big	some Europices: String encoding	s and co		ns, ope	rators,							
functions. File handling	Tary Functions. Sumg specific f	unction	is, User	define	20							
		то	тат.	15 DFI								
COURSE OUTCOMES. At the and	of the course the student will be	able to	IAL.	т ј і Ц	1003							
CO1: Develop bioinformatics tools w	yith programming skills											
CO2: Apply computational based sol	utions for biological perspective	26										
CO3: Pursue higher education in this	field											
CO4: Practice life-long learning of ar	nlied hiological science											
CO5: Analyse the Perl Programming	price biological science.											
COS. maryse the ren rogramming												

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3	-	-	-	-	-	-	2	-	-	-	-
CO2	3	2	3	-	-	-	-	-	-	2	-	2	-	-
CO3	3	2	2	3	-	-	-	-	-	2	-	3	-	-
CO4	2	3	2	-	-	-	-	-	-	2	-	2	-	-
CO5	2	3	2	-	-	-	-	-	-	2	3	-	-	-

1- low, 2 - medium, 3 - high, '-' no correlation

REFERENCE BOOKS:

1.A Textbook of BioinformaticInformation-theoretic Perspectives of Bioengineering and Biological Complexeshttps://doi.org/10.1142/11627 | September 2020

2.Bioinformatics, 4th Edition, Andreas D. Baxevanis (Editor), Gary D. Bader(Editor), David S. Wishart (Editor)ISBN: 978-1-119-33558-0 May 2020

3.A First Course In Computers 2003 Edition (With Cd) Paperback

by Sanjay Saxena (Author)

WEB RESOURCES:

1.<u>https://guides.lib.berkeley.edu/bio</u>informatics

2.<u>https://www.linkedin.com/pulse/bio</u>informatics-web-resources-ajit-roy

PROGRAMME ELECTIVE - V

CS624221 - Multimedia	and Compression Te	chnique	es		
	Course Type:	L	Т	P	C
Course Category: Programme Elective	Theory	3	0	0	3
COURSE OBJECTIVES:					- I
• To Know the basic ideas of compress	ion algorithms related t	o multii	nedia c	ompor	ients.
• To Learn the principles and standards	of Text and Audio Con	mpressio	on Tech	iniques	3.
• To introduce the principles and standa	ards of Image and Vide	o Comp	ression	Techn	niques.
• To analyze the use of the techniques i	in real-time applications	5.			1
• To Implement various applications us	sing compression algor	ithms co	oncepts	acquii	red over
the 5Units of the subject for improved	d employability skills		I.		
UNIT 1: FUNDAMENTALS OF COMPR	ESSION				9
Special features of multimedia-Graphics, Ima	age and Video represen	tations -	- Funda	menta	1
concepts of video, digital audio – Storage rec	juirements of multimed	ia appli	cations	– Need	d for
compression – Taxonomy of compression Al	gorithms- Error Free C	Compres	sion – I	Lossy	
Compression.					
UNIT 2: TEXT COMPRESSION					9
Compression principles-source encoders an	d destination encoders	s- entro	py enco	oding	-source
encoding- text compression -static Huffm	an coding dynamic I	Huffmar	codin	g –ari	ithmetic
coding – Lempel Ziv-Welsh Compression- S	hannon Fano coding				
UNIT 3: AUDIO COMPRESSION					9
Audio compression–DPCM-Adaptive PCM	M –adaptive predictiv	ve cod	ing-line	ar Pr	edictive
codingcode excited LPC-perpetual coding. A	Audio compression Tec	hniques	– μ La	w and	A Law
companding - Speech compression - Freque	ncy domain and filtering	ng – Ba	sic sub	band c	oding –
Application to speech coding – G.722 – Appl	ication to audio coding	-MPE	G audio)	
UNIT 4: IMAGE COMPRESSION					9
Image Compression: Fundamentals — Con	mpression Standards –	JPEG	Standa	rd –S	ub-band
coding – Wavelet Based compression – Imp	plementation using Filt	ers - E	ZW, SI	PIHT C	oders –
JPEG 2000 Text Audio Image Multimedia V	/ideo Coding -Static H	uffman	-Dynar	nic Hu	iffman -
Dynamic Coding Standards -G.722 -MPEG	Coding -APC -LPC -	Perpetu	al Codi	ng -St	ib-Band
Coding Coding -Sub-Band Coding -Loss	ess Coding -Hierarchi	al Cod	ing Sta	indard	s JPEG
JPEG2000 JBIG JBIG2 -DVI Technology -	Current Trends Standar	ds MPE	GI MI	PEG2	MPEG3
MPEG4 standards – JBIG and JBIG2 standar	ds.				
UNIT 5: VIDEO COMPRESSION	ula MDEC	·			<u>9</u>
Video compression techniques and Standa	rds-MPEG video cod	ing: M	EG-I	and N	1 PEG-2
video coding: MIPEG-3 and MIPEG-4-Moth	on estimation and con	ipensati	on tech	iniques	;-H.201
standard – - DVI technology – DVI real ti	ime compression – Cu	rrent 1	rends in	i com	pression
standards.					DIODO
			JTAL:	45 PE	KIODS
COURSE OUTCOMES: At the end of the co	ourse, the student will be	e able to			
CO1: Understand the basic ideas of compress	sion algorithms related	to multi	media c	compo	nents
CO2: Understand the principles and standard	s of Text and Audio Co	mpress	on Tec	hnique	\$S
CO3: Understand the principles and standard	s of Image and Video C	Compres	sion Te	echniqu	ues

CO4: Make use of the techniques in real-time applications

CO5: Implement various applications using compression algorithms

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3	-	-	-	-	-	-	2	-	-	-	-
CO2	3	2	2		-	-	-	-	-	2	-	3	-	-
CO3	3	3	2	2	-	-	-	-	-	2	2	2	-	-
CO4	3	3	2	2	-	-	-	-	-	2	-	2	-	-
CO5	3	3	2	-	-	-	-	-	-	2	-	-	-	-

1- low, 2 - medium, 3 - high, '-' no correlation

REFERENCE BOOKS:

1.Fred Halshall "Multimedia Communication - Applications, Networks, Protocols and Standards", Pearson Education, 2007.

2.KR. Rao,Z S Bojkovic, D A Milovanovic, "Multimedia Communication Systems: Techniques, Standards, and Networks", Pearson Education 2007.

3.R.Steimnetz, K. Nahrstedt, "Multimedia Computing, Communications and Applications", Pearson Education Ranjan Parekh, "Principles of Multimedia", TMH 2007.

WEB RESOURCES:

1.https://www.dsengg.ac.in/ece/EC6018%20Multimedia%20Compression%20and%20Communi cation.pdf

2.https://ieeexplore.ieee.org/document/6205727

CS624222 -	Data Visualization Techniq	ues			
Course Category: Programme	C	L	Т	Р	C
Elective	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:					
• To develop skills to both design	n and critique visualizations.				
• To introduce visual perception	and core skills for visual anal	ysis.			
• To understand visualization for	time-series analysis.				
• To understand visualization for	ranking analysis.				
• To understand visualization fo	r deviation analysis concepts	acquire	ed over	the 51	Units of
the subject for improved emplo	yability skills				
UNIT 1: CORE SKILLS FOR VISU	AL ANALYSIS				9
Information visualization – effective d	ata analysis – traits of meaning	ngful da	ta – vis	ual per	rception
-making abstract data visible - bu	ilding blocks of informatio	n visua	lization	ı – ar	nalytical
interaction – analytical navigation – o	ptimal quantitative scales - :	referenc	e lines	and re	egions –
trellises and crosstabs – multiple cond	current views – focus and co	ontext –	details	on de	mand –
over-plotting reduction – analytical pat	terns – pattern examples.				_
UNIT 2: TIME-SERIES, RANKING	, AND DEVIATION ANAL	ASIS	· .		9
Time-series analysis – time-series pat	terns – time-series displays -	- time-s	eries be	est pra	ctices –
part-to-whole and ranking patterns –	- part-to-whole and ranking	display	s - be	st prac	ctices –
deviation analysis – deviation analysis	displays – deviation analysis	best pra	actices.		
ANAL VSIS	LATION, AND WULTIVA	KIAIE			9
Distribution analysis – describing dist	tributions – distribution patte	erns – d	istribut	ion dis	nlavs –
distribution analysis best practices – c	correlation analysis – describ	ing corr	elations	S = COT	relation
patterns – correlation displays – correl	ation analysis techniques and	best pr	actices	– mult	ivariate
analysis – multivariate patterns – mu	ltivariate displays – multiva	riate and	alysis to	echniq	ues and
best practices.	1 5		5	1	
UNIT 4: INFORMATION DASHBO	ARD DESIGN				9
Information dashboard – Introduction	n– dashboard design issues	and as	sessmer	nt of i	needs –
Considerations for designing dashboar	d-visual perception – Achievi	ng eloq	uence.		
UNIT 5: INFORMATION DASHBO	ARD DESIGN				9
Advantages of Graphics _Library of G	raphs – Designing Bullet Gra	phs – D	esignin	g Spar	klines –
Dashboard Display Media –Critical I	Design Practices – Putting in	t all tog	gether-	Unveil	ling the
dashboard.					
		Т	OTAL:	45 PE	RIODS
COURSE OUTCOMES. At the end of	f the course the student will h	e able to			
CO1: Explain principles of visual perce	ention				
CO2: Apply core skills for visual analy	vsis				
CO3: Apply visualization techniques for	or various data analysis tasks				
CO4. Design information dashboard	or various data anarysis tasks				
CO5: Understand visualization for dev	iation analysis				
	iution unury 515.				

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	-	3	2	-	-	-	-	-	2	2	2	-	-
CO2	2	-	3	-	-	-	-	-	-	2	-	2	-	-
CO3	2	2	3	-	-	-	-	-	-	2	-	-	-	-
CO4	2	2	2	-	-	_	-	-	-	2	-	3	-	-
CO5	2	-	3	2	-	-	-	-	-	2	3	-	-	-

1- low, 2 - medium, 3 - high, '-' no correlation

REFERENCE BOOKS:

1.Gert H. N. Laursen and Jesper Thorlund, "Business Analytics for Managers: Taking business intelligence beyond reporting", Wiley, 2010.

2.Nathan Yau, "Data Points: Visualization that means something", Wiley, 2013.

3.Stephen Few, "Information dashboard design: Displaying data for at-a-glance monitoring", second edition, Analytics Press, 2013.

WEB RESOURCES:

1.https://blog.hubspot.com/marketing/data-visualization-resources.

2.https://www.xenonstack.com/blog/data-visualization-techniques.

CS6242	23 - Python with R program				
Course Category: Programme		L	Т	Р	C
Elective	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:					ı
• To understand basic elements	of python and concepts on cont	rolling	progra	m flow	1
• To solve problems by writing	functions and using objects	-			
• To explore fundamentals of b	io python				
• To handle data using R progra	am				
• To perform statistical analysi	is of biological data concepts a	acquired	lover	the 5U	Inits of
the subject for improved emp	loyability skills	1			
UNIT 1: ELEMENTS OF PYTHO	N PROGRAMMING				9
Introduction to Python: source code,	text editors, whitespace, syntax	x and s	yntax e	rrors,	Python
versions - Lists: lists and arrays -	Dictionaries: paired data types	s, hashi	ng, key	y uniqu	ueness,
argument unpacking and tuples - W	Vorking with files: objects and	classes	s, paths	and f	folders,
relationships between variables and	values, text and binary files, ne	wlines	- Loop	s: bloc	cks and
indentation, variable scoping, iteration	on, ranges - Conditions:Truth an	d falsel	nood, E	Boolear	n logic,
identity and equality, evaluation of st	atements, branching.				
UNIT 2: PROBLEM SOLVING					9
Comprehension: List and Dictionary	- Writing functions: nuts and	bolts of	of writi	ng fur	ctions:
argument passing, encapsulation, da	ta flow through a program – C	Classes a	and ob	jects: o	classes,
instances, methods vs. functions,	self, constructors, magic m	nethods	- O	bject-o	riented
programming: inheritance and clas	s hierarchies, method overridir	ng, sup	er clas	sses ai	nd sub
classes, polymorphism, composition,	multiple inheritances. Case stud	dy: Obj	ect rep	resenta	ition of
biological data: Defining features of	t a system (eg., organism) and	using	them to	o ident	ify the
UNIT 2. BLODYTHON					0
DNII 5: DIOF I I HON	hules and creating a new modul	e Bior	wthon	introd	9 Juction
installation important components lik	rules and creating a new modul	Chusta	$\mathbf{W} \mathbf{D}$	nniou B Sw	vise Prot
etc parsing output Case study: Use	of python libraries for biologica	l annlic	vation.	using]	BioSea
to change information content from [NA to RNA to protein	n appin	ation.	using	blobcq
UNIT 4: R PROGRAMMING ESS	ENTIALS				9
Fundamentals: Constants operators	functions variables Random n	umbers	Vecto	ors and	vector
indexing Simple descriptive stats	Loops Conditional expression	ns - D	, teere	es: Le	vels of
measurement (nominal, ordinal, inter	rval ratio scale) Vector types	Charac	teristic	s of tig	dv data
(missing values), data imputation.	luplicates, outliers, spelling, (Create	new v	ariable	s in a
data.frame - Filter rows and columns	- Merging datasets.				5
UNIT 5: STATISTICAL DATA AN	NALYSIS USING R				9
Basic Statistics: mean, median, stan	dard deviation, variance, corre	lation,	covaria	ance -	Linear
regression: simple linear regression,	introduction to multiple linear	regress	ion - C	Classifi	ication:
logistic regression, decision trees, SV	M - Ensemble methods: baggin	ig, rand	om for	ests, b	oosting
- Clustering: K-means, Hierarchica	alclustering, X-means.Case stu	idy: D	eploym	ent of	f R in
Biological data analysis: Statistical data	ata analysis of field trial data for	r experi	mental	signif	icance.
		ТО	TAL:	45 PEI	RIODS

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1: Write programs handling data input and control the data flow

CO2: Solve simple problems using a program

CO3: Write python programs with inbuilt functions from bio python package

CO4: Solve analytic data using R program

CO5: Perform statistical analysis of biological data using R

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	3		-	-	-	-	-	2	-	2	-	-
CO2	3	2	3	2	-	-	-	-	-	2	-	-	-	-
CO3	2	2	2	2	-	-	-	-	-	2	-	2	-	-
CO4	2	2	2		-	-	-	-	-	2	3	2	-	-
CO5	1	2	2		-	-	-	-	-	2	3	-	-	-

1- low, 2 - medium, 3 - high, '-' no correlation

REFERENCE BOOKS:

1.Jones, M. (2014), Advanced Python for Biologists. Create Space Independent Publishing Platform 1st edition, ISBN: 978-1495244377

2. Downey A. B. (2012), Think Python O'Reilly Media 1 edition ISBN: 978-1449330729

3.MacLean, D., R Bioinformatics Cookbook: Use R and Bioconductor to perform RNAseq, genomics, data visualization, and bioinformatic analysis, Packt Publishing, ISBN: 978-1789950694

WEB RESOURCES:

1.https://posit.co/blog/three-ways-to-program-in-python-with-rstudio/

2.https://exeter-data-analytics.github.io/python-data/scraping.html

CS624224 -For	mal Model and Software Sy	stems			
Course Category: Programme	Course Tunes Theory	L	Т	Р	С
Elective	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:					
• To understand the goals, cor	nplexity of software system	is, the i	ole of	Speci	ification
activities and qualities to control	ol complexity.			-	
• To understand the fundamental	s of abstraction and formal sy	vstems			
• To learn fundamentals of logic	reasoning- Propositional Lo	gic, tem	poral lo	ogic ar	nd apply
to models systems					
• To understand formal specifica	tion models based on set the	ory, calc	ulus an	id alge	bra and
apply to a case study					
• To learn Z, Object Z and B Sp	pecification languages with ca	ase stud	ies cono	cepts a	acquired
over the 5Units of the subject f	or improved employability sk	ills			
UNIT 1: SPECIFICATION FUNDA	MENTALS				9
Role of Specification- Software Con	nplexity - Size, Structural,	Environ	mental,	App	lication,
domain, Communication Complexity	, How to Control Complex	xity. So	ftware	specif	fication,
Specification Activities-Integrating Fo	ormal Methods into the Softw	are Life	-Cycle.	Speci	ification
Qualities- Process Quality Attributes	of Formal Specification La	anguage	s, Mod	el of	Process
Quality, Product Quality and Utility,	Conformance to Stated Go	als Qua	lity Di	mensi	ons and
Quality Model					
UNIT 2: FORMAL METHODS					9
Abstraction- Fundamental Abstraction	is in Computing. Abstraction	is for So	oftware	Const	ruction.
Formalism Fundamentals - Formal S	systems, Formalization Proce	ess in S	oftware	e Eng	ineering
Components of a Formal System- Sy	ntax, Semantics, and Inferen	ce Mech	nanism.	Prope	erties of
Formal Systems - Consistency. Au	itomata-Deterministic Finite	Accep	ters, S	tate I	Machine
Modeling Nondeterministic Finite Ad	ccepters, Finite State Transc	lucers E	xtended		te State
Machine. Case Study—Elevator Contr	01.				0
UNIT 5: LUGIC	ad on Adapting a Dramiga	Inform	Do Dog	d on	9 Notural
Propositional Logic - Reasoning Das Deduction Predicate Logic Syntax	and Sometice Policy Langue		ificatio	a on land	Natural
Deduction. Fredicate Logic - Syntax a	n Temperal Logia Temper	age spec	for Sno	n, Kiit	fion and
Verification Temporal Abstraction Pt	consistional Temporal Logic	(PTI)	TOI SPE First Or	der T	emporal
Logic (FOTI) Formal Verification V	Verification of Simple FOTI	(I IL), I Model	Check	ing I	Program
Graphs Transition Systems	clineation of Simple 1011	, would		ing, i	Iograin
UNIT 4. SPECIFICATION MODEL	S				9
Mathematical Abstractions for Model	-Based Specifications-Forma	1 Specif	ication	Based	l on Set
Theory Relations and Functions Pt	operty-Oriented Specification	ns- Alo	ebraic	Speci	fication
Properties of Algebraic Specification	s Reasoning Structured Sp	ecificati	ons Ca	ase St	ndv—A
Multiple Window Environment: requ	irements. Modeling Formal	Specifi	cations	. Calc	culus of
Communicating Systems: Specific Ca	lculus for Concurrency. Oper	ational	Semant	ics of	Agents.
Simulation and Equivalence, Derivation	on Trees, Labeled Transition S	systems.			0
UNIT 5: FORMAL LANGUAGES		-			9
The Z Notation, abstractions in Z, Rep	resentational Abstraction, Ty	pes, Rel	ations a	nd Fu	nctions,
· / 1	<i>, , , ,</i>	• ·			

Sequences, Bags. Free Types-Schemas, Operational Abstraction -Operations Schema Decorators, Generic Functions, Proving Properties from Z specifications, Consistency of Operations. Additional Features in Z. Case Study: An Automated Billing System

TOTAL: 45 PERIODS

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1:Understand the complexity of software systems, the need for formal specifications activities and qualities to control complexity.

CO2:Gain knowledge on fundamentals of abstraction and formal systems

CO3:Learn the fundamentals of logic reasoning- Propositional Logic, temporal logic and apply to models systems

CO4:Develop formal specification models based on set theory, calculus and algebra and apply to a typical case study

CO5:Have working knowledge on Z, Object Z and B Specification languages with case studies. **CO-PO MAPPING**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	3	-	-	-	-	-	-	2	-	3	-	-
CO2	2	3	2		-	-	-	-	-	2	2	-	-	-
CO3	2	3	2	3	-	-	-	-	-	2	-	-	-	-
CO4	2	3	2	-	-	-	-	-	-	2	-	-	-	-
CO5	2	3	2	-	-	-	-	-	-	2	-	2	-	-

1- low, 2 - medium, 3 - high, '-' no correlation

REFERENCE BOOKS:

1. Mathematical Logic for computer science ,second edition, M.Ben-Ari ,Springer,2003.

2.Logic in Computer Science- modeling and reasoning about systems, 2 nd Edition, Cambridge University Press, 2004.

3. The ways Z: Practical programming with formal methods, Jonathan Jacky, Cambridge University Press, 1996.

WEB RESOURCES:

1.https://www.sciencedirect.com/journal/journal-of-systems-and-software

2.https://en.wikipedia.org/wiki/World_Wide_Web

CS624225 -	Software Project Managem	ent			
Course Category: Programme	Correct Trees Theorem	L	Т	Р	C
Elective	Course Type: Theory	3	0	0	3
COURSE OBJECTIVES:				-	
• To understand the Software Pro	pject Planning and Evaluation	techniq	ues.		
• To plan and manage projects (SDLC).	s at each stage of the softw	vare dev	velopm	ent life	e cycle
• To learn about the activity plan	ning and risk management pr	inciples.			
• To manage software projects an	nd control software deliverabl	es.			
• To develop skills to manage	the various phases involved	in proj	ect mai	nageme	ent and
people management.	-			_	
UNIT 1: PROJECT EVALUATION	AND PROJECT PLANNIN	IG			9
Importance of Software Project Mana	gement - Activities - Metho	dologie	s – Cat	egoriza	ation of
Software Projects - Setting objectiv	es - Management Principle	s – Ma	nageme	ent Co	ontrol –
Project portfolio Management – Cost-	benefit evaluation technology	– Risk (evaluati	on - S	trategic
program Management – Stepwise Proj	ect Planning.				
UNIT 2: PROJECT LIFE CYCLE A	AND EFFORT ESTIMATIO	N			9
Software process and Process Mod	els – Choice of Process m	odels -	- Rapio	d App	lication
development – Agile methods –	Dynamic System Develop	oment	Method	l – E	Extreme
Programming– Managing interactive p	processes – Basics of Software	estimat	tion – E	ffort a	nd Cost
estimation techniques – COSMIC	Full function points – CC	СОМО	II –	a Par	ametric
Productivity Model.					
UNIT 3: ACTIVITY PLANNING A	ND RISK MANAGEMEN I	-	•		9
Network Planning models – Formula techniques – Critical path (CRM) met Risk Management – PERT technic Creation of critical paths – Cost schedu	ject schedules – Activities – S ating Network Model – Forv hod – Risk identification – A que – Monte Carlo simulation ules.	sequence vard Passessme ssessme on – Re	ss & B ent – Ri esource	ackwa ackwa isk Pla Alloc	rd Pass nning – ation –
UNIT 4: PROJECT MANAGEMEN	T AND CONTROL				9
Framework for Management and cor monitoring – Earned Value Analysis control – Software Configuration Man UNIT 5: STAFFING IN SOFTWAR	ntrol – Collection of data – – Prioritizing Monitoring – agement – Managing contract E PROJECT	Visualiz - Projec s – Con	zing pro t track tract Ma	ogress ing – anagen	- Cost Change nent. 9
Managing people – Organizational beh	navior – Best methods of staff	selectio	n – Mo	tivatio	n – The
Oldham – Hackman job characterist	tic model – Stress – Health	n and S	Safety -	- Ethi	cal and
Professional concerns – Working in	teams - Decision making -	Organi	zationa	l struc	tures –
Dispersed and Virtual teams - Commu	inications genres – Communic	ation pl	ans – L	eaders	hip.
		TC	DTAL:	45 PE	RIODS
COURSE OUTCOMES: At the end o	f the course, the student will be	e able to	-		
CO1: Understand Project Management	t principles while developing	software	e.		
CO2: Gain extensive knowledge about	the basic project managemen	t concep	ots, fran	neworl	s and
the process models.					

CO3: Obtain adequate knowledge about software process models and software effort estimation techniques.

CO4: Estimate the risks involved in various project activities.

CO5: Define the checkpoints, project reporting structure, project progress and tracking mechanisms using project management principles.

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	2	3	-	-	-	-	-	2	-	-	-	-
CO2	2	3	2	-	-	-	-	-	-	2	-	-	-	-
CO3	2	3	2	-	-	-	-	-	-	2	-	-	-	-
CO4	2	3	2	3	-	-	-	-	-	2	2	3	-	-
CO5	2	3	2	-	-	-	-	-	-	2	-	-	-	-

1- low, 2 - medium, 3 - high, '-' no correlation

REFERENCE BOOKS:

1.Bob Hughes, Mike Cotterell and Rajib Mall: Software Project Management – Fifth Edition, Tata McGraw Hill, New Delhi, 2012.

2.Robert K. Wysocki —Effective Software Project Management – Wiley Publication, 2011. 3.Walker Royce: —Software Project Management- Addison-Wesley, 1998.

WEB RESOURCES:

1.https://www.g2.com/categories/resource-management

2.https://clickup.com/blog/resource-management-tools/

INSTITUTE ELECTIVE

CS624901: MO	DERN SENSOR TECH	NOLO	GY								
Course Category: Institute Elective	Course Type: Theory	3	0	0	3						
COURSE OBJECTIVES:											
 To impart the fundamentals applications. To provide in depth knowledg To implement the sensors for To provide knowledge in me scientific activities. 	of sensor technology ar ge in different types of Sen monitoring of Industrial E easuring various physical	nd its si nsors. Equipme variable	gnificar nt. es durin	ice in i g indus	ndustrial strial and						
To impart understanding of intelligent sensors, micro-sensors and Nano-sensors											
UNIT 1: CHARACTERISTICS OF	SENSORS				9						
Introduction to Instrument and thei instruments – Dynamic characteristi elements – Indicating, Recording and	r representation – Static cs of instruments – Tran display elements	perform sducer e	nance c elements	haracte s – Inte	ristics of prmediate						
UNIT-2: MEASUREMENT OF N	Palativa absolute type	VINEN IS		romont	<u>y</u>						
Dimensional metrology – Mechanica gauging devices - Force measurement load cell – Pneumatic load cell – Ela and power measurements – Transmis	al, Electromechanical, Pnent - Balance principle of stic force devices – Electricion, Torsion, Driving, Al	eumatic, force me romecha bsorption	Hydrau easurem nical m n type d	ulic din ent – H ethods ynamor	nensional Hydraulic – Torque neter						
UNIT-3 : SENSORS FOR EQUIPM	MENT MONITORING				9						
Pressure measurement – Moderate pr Low pressure measurement – Calibi Measurement of temperature – No Electrical Methods of Temperature n Acoustics measurement.	ressure measurement – Hi ration of pressure gauges on electrical methods of measurement – Radiation I	gh press – Temp f Tempe Methods	ure Brid perature prature = Flow	lgeman measu Measur measu	Gauge – rement – rement – rement –						
UNIT-4 : SENSORS FOR CONDI	FION MONITORING				9						
Vibration and Noise monitoring – ' Corrosion monitoring – Material def – Performance trend monitoring – system technique in fault diagnostics.	Temperature monitoring ect monitoring - Acoustic Selection of condition n	– Wear emissic nonitorii	behavion beh	or mon toring t niques	itoring – echnique – Expert						
UNIT-5 : ADVANCEMENT IN SE	NSING TECHNOLOG	Y			9						
Specific gravity measurements – Me Moisture – pH value – Biomedical n devices - Smoke density measurem Sensors – Virtual Instrumentation	easurements of liquid lev neasurements – Environm ent – Fibre optic Transc	vel – Vis ental air lucers –	scosity polluti Micros	– Hum on mea sensors	idity and surement – Smart						
COUDSE OUTCOMES: At the and a	f the course the student wi	11 bo obl	$\frac{101A}{10}$	ll: 45 P	EKIODS						
COLORE OUTCOMES. At the end of COLORE the knowledge of various e	lements in sensor measure	ement	210								
CO2: Learn about the various sensors	s for motion, vibration, for	rce and p	ower								

CO4: Find innovative solutions in monitoring physical parameters during on-line and off-line conditions.

CO5: Analyse the fundamental principles of advancement in sensor technology.															
CO-PO) MAP	PING	г												
	DO1	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	
	roi	2	3	4	5	6	7	8	9	0	1	2	1	2	
CO1	2	2	2		2	-	-	-	-	2	-	2	2	-	
CO2	2	2	2		2	-	-	-	-	2	-	2	2	-	
CO3	2	2			2	-	-	-	-	2	-	2	-	2	
CO4	2	2			2	-	-	-	-	2	-	2	-	2	
CO5	2	2	2		2	-	-	-	-	2		2	-	2	
			1- lo	w, 2 -	mediu	ım, 3	- high	l, '-' n	o cori	elatior	1				
TEXT	BOOK	KS:													

1.Nakra B.C. and Chaudhry K.K., "Instrumentation, Measurement and Analysis", Tata Mc Graw Hill, 4th Edition, 2017.

2.Wang L. and Gao R.X., "Condition Monitoring and Control for Intelligent Manufacturing", Springer - Verlog London Limited, 2006.

Reference Books

1. John Vetelino, AravindReghu, "Introduction to Sensors", CRC Press, 2017

2. Sinclair I.R., "Sensors and Transducers", Elsevier India Private Limited, 2001.

WEB RESOURCES:

1.https://www.techbriefs.com/component/content/article/tb/pub/features/articles/33212 2.https://www.hindawi.com/journals/js/2021/1527467/

CS624902: DECISION S	SUPPORT AND INTEL	LIGEN	T SYST	EMS							
Course Cotegory Institute Elective	Course Tures Theory	L	Т	Р	C						
Course Category. Institute Elective	Course Type. Theory	3	0	0	3						
COURSE OBJECTIVES:											
 To review and clarify the fundamental terms, concepts associated with Decision Support Systems. To discuss the modelling and analysis of the Decision Support Systems. To understand the enterprise DSS and knowledge management. To understand the intelligent systems used in DSS. To discuss organizational and social implications of Decision Support Systems 											
Decision Making: Introduction and D	Definitions - Managers an	d Decisi	- ion Mak	ing ₋ M	anageri	<u>a</u> 1					
Decision Making: Introduction and Definitions - Managers and Decision Making - Managerial decision making and Information Systems - Managers and computerized support Need - framework for decision support – concept of decision support systems (DSS) –executive support systems - preview of the modeling process-phases of decision making process.											
DSS components DSS classification	21313 one Dete werehousing	0.000	analy	aia mi	9 ning or	nd					
visualization - modeling and analysis- Static and dynamic models – influence diagrams – Optimization via mathematical programming – Heuristic programming – simulation – multidimensional modeling – model base management.											
UNIT 3 : ENTERPRISE DECISIO	N SUPPORT SYSTEM	S			9						
Group decision making – Group support systems- Technologies – Creativity and Idea generation - enterprise information systems (EIS) – Comparing and Integrating EIS and DSS - supply and value chain and DSS- supply chain problems and solutions – Computerized systems – knowledge management methods, technologies and tools											
UNIT 4 : INTELLIGENT SYSTEM	AS				9						
Artificial intelligence (AI) – Concepts and Definitions – AI versus natural intelligence - expert systems-concepts, structure, types and benefits and problems – knowledge Engineering - knowledge acquisition and validation - knowledge representation – Techniques – Inference techniques.											
UNIT 5 : IMPLEMENTATION, IN	TEGRATION, AND IN	МРАСТ	S		9						
Implementation – Major issues of implementation – implementation strategies – Models of integration – Intelligent DSS – Intelligent modelling and model management – problems and issues in integration - impact of management support systems - overview – personnel management issues – impact of Individuals – Impacts on productivity, quality and competitiveness – Issues of legality, privacy and ethics – Other societal impacts.											
TOTAL: 45 PERIODS											
COURSE OUTCOMES: At the end of the course, the student will be able to											
CO1: Demonstrate an understanding	of the theory of decisions	and dec	ision and	alysis							
CO2: Demonstrate the different models used in the DSS											
CO3: Design an information system using emerging tools and technologies for a given business problem.											
CO4: Describe the role of expert syst	ems.										

CO5: Illustrate the implementation, integration and impacts of Decision Support Systems CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2	2	-	-	-	-	-	-	2	-	-
CO2	2	2	-	-	2	-	-	-	-	-	-	2	-	-
CO3	2	2	2	-		-	-	-	-	-	-	2	-	-
CO4	2	2	-	-	2	-	-	-	-	-	-	2	-	-
CO5	2	2	2	2	2	-	-	-	_	-	-	2	-	-

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1.Efraim Turban and Jay E Aronson, "Decision Support and Intelligent Systems", Prentice Hall, 9thEdition, 2010.

2.Elain Rich, Kevin Knight and Shivashankar B. Nair, "Artificial intelligence", Tata McGraw-Hill Publishing Company Limited, 3rd Edition, 2009.

Reference Books:

1.Daniel J. Power, "Decision Support Systems: Concepts and Resources for Managers", Greenwood Publishing Group, 1st Edition, 2002.

2.Quazi Khabeer, "Business Process Management and Decision Support Systems", Alpha Science International Limited, 1stEdition, 2013.

WEB RESOURCES:

1.https://www.researchgate.net/publication/277703502_Intelligent_Decision_Support_Systems 2.https://www.intechopen.com/chapters/10951