PSN COLLEGE OF ENGINEERING AND TECHNOLOGY

(An Autonomous Institution Recognised by AICTE, New Delhi and affiliated to Anna University, Chennai) Accredited with A+ Grade by NAAC. An ISO 9001:2015 Certified Institution **Melathediyoor, Tirunelveli – 627 152**

B.E. AERONAUTICAL ENGINEERING

Curriculum and Syllabus

SEMESTER I TO VI

and

VERTICAL 1 To 8

Regulation 2022

VISION AND MISSION OF THE INSTITUTE:

Institution Vision	To empresearc	erge as a pioneer institute inculcating engineering education, skills, h, values and ethics.					
	IM-1	To achieve greater heights of excellence in technical knowledge and skill development through innovative teaching and learning practices.					
	IM-2	To develop the state of art infrastructure to meet the demands of technological revolution.					
Institution Mission	IM-3	To improve and foster research in all dimensions for betterment of society.					
	IM-4	To develop individual competencies to enhance innovation, employability and entrepreneurship among students.					
	IM-5	To instill higher standards of discipline among students, inculcating ethical and moral values for societal harmony and peace.					

VISION AND MISSION OF THE DEPARTMENT:

Department Vision	The Departme recognition as to graduates Aeronautical	The Department of Aeronautical Engineering will strive and achieve the global ecognition as a center of Excellence by imparting quality education, leading o graduates becoming professionals with specialized knowledge in Aeronautical Engineering.							
	DM-1	To prepare the students to acquire good fundamental knowledge in various fields of Aeronautical Engineering, develop problem solving skills and learn application oriented concepts.							
Department Mission	DM-2	To prepare the students to have good social, moral and ethica values.							
	DM-3	To provide conducive environment to enhance the potential for sponsored research and consultancy projects.							

Program Outcomes (POs):

PO's	KNOWLEDGE	STATEMENTS	APPLIANCE
No			
1	Engineering Knowledge	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	Theory/ Practical / Project work
2	Problem Analysis	Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	Theory / Practical / Projects
3	Design / Development of Solutions	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	Theory / Practical / Projects
4	Conduct Investigations of Complex Problems	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	Theory / Practical
5	Modern Tool usage	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.	Theory / Practical / Project work
6	The Engineer and Society	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	Theory / Industrial visit / In plant training
7	Environment and Sustainability	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	Theory / Industrial Visit/ In plant Training

8	Ethics Individual and	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. Function effectively as an individual, and	Theory / Industrial visit / In plant training Projects
	Team Work	as a member or leader in diverse teams, and in multidisciplinary settings.	
10	Communication	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	Projects/ Seminar/ Mini Project
11	Project Management and Finance	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	Projects
12	Life-long Learning	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	Projects / Higher Studies

Program Specific Outcomes [PSOs]:

PSO-1 : Graduates will be able to design and analyze various aircraft materials and structures.

PSO-2: Graduates will be able to develop solutions for various aerodynamic, propulsion and control systems used in aircrafts.

PSO-3 Identify and apply the knowledge of aeronautical engineering for industrial applications.

	CURRICULUM											
		,	Sem - 01									
S.No	Course Code	Course Name	Classi	fication	L	Т	Р	С				
1	IC610001	Professional English I	ICC	Theory	2	0	0	2				
2	IC610002	Matrices and Calculus	ICC	Theory	2	1	0	3				
3	IC610003	Engineering Physics	ICC	Theory	3	0	0	3				
4	IC610004	Engineering Chemistry	ICC	Theory	3	0	0	3				
5	CS610005	Problem Solving and 'C' Programming	ICC	Theory	3	0	0	3				
6	ME610006	Engineering Graphics with CAD	ICC	Theory with Practical Component	2	0	2	3				
7	IP610101	Physics & Chemistry Laboratory	ICC	Practical	0	0	3	1.5				
8	IP610102	Programming in 'C' Laboratory	ICC	Practical	0	0	3	1.5				
9		NCC/NSS/NSO *	IMC	Institute Mandatory	1*	0	0	0				
10	IC610007	Tamil marabu/Heritage of Tamil	ICC	Theory	1	0	0	1				
		Total			16	1	8	21				

	Sem - 02										
11	IC620008	Professional English II	ICC	Theory with Practical Component	2	0	2	3			
12	IC620009	Transforms & Partial Differential Equations	ICC	Theory	2	1	0	3			
13	IC620010	Engineering Materials (for Non-Circuit Branches)	ICC	Theory	3	0	0	3			
10	IC620011	Semiconductor Physics (for Circuit Branches)			3	0	0				
14	ME620012	Engineering Mechanics (for Non Circuit Branches)	DCC	Theory with	3	0	0	2			
14	CS620013	Fundamentals of Artificial Intelligence (for Circuit Branches)	PCC	project	3	0	0	3			
15	CS620014	Python Programming	ICC	Theory	3	0	0	3			
16	ME620015	Basic Engineering	ICC	Theory	3	0	0	3			

17	IP620103	Python Laboratory	ICC	Practical	0	0	3	1.5
18	IP620104	Engineering Practice laboratory	ICC	Practical	0	0	3	1.5
19	IM610401	Environmental Studies	IMC	Institute Mandatory	2*	0	0	0
20	IC620016	Tamils and Technology	ICC	Theory	1	0	0	1
		Total			17	1	8	22

	Sem - 03										
21	IC630017	Numerical Methods and Statistics	ICC	Theory	3	0	0	3			
22	AE630201	Aero Engineering Thermodynamics	PCC	Theory	3	0	0	3			
23	ME630202	Fluid Mechanics and Machinery	PCC	Theory	3	0	0	3			
24	AE630202	Solid Mechanics for Aeronautical Engineering	PCC	Theory with project	3	0	0	3			
25	AE630203	Fundamentals of Aeronautics	PCC	Theory with Practical Component	2	0	2	3			
26		Professional Elective-1	PEC	Theory	3	0	0	3			
27	ME630301	Fluid Mechanics and Machinery Laboratory	PCC	Practical	0	0	3	1.5			
28	AE630301	Solid Mechanics and Thermal Engineering Laboratory	PCC	Practical	0	0	3	1.5			
29	AE630501	Integrated Aptitude Skills - I (Lower)	EEC	Skill based course	0	0	1	0.5#			
30	IM630402	Universal Human Values	IMC	Theory	2*	0	0	0			
		Total			17	0	9	21			

	Sem - 04										
31	IC640018	Boundary Value Problems and Probability distributions	ICC	Theory	3	0	0	3			
32	AE640204	Aerodynamics - I	PCC	Theory with Practical Component	2	0	2	3			
33	AE640205	Aircraft Structures - I	PCC	Theory with project	3	0	0	3			
34	AE640206	Propulsion - I	PCC	Theory	3	0	0	3			
35		Professional Elective-2	PEC	Theory	3	0	0	3			
36		Institute elective -1	IEC	Theory	3	0	0	3			

37	AE640302	Aerodynamics Laboratory	PCC	Practical	0	0	3	1.5
38	AE640303	Computer Aided Drafting of Aircraft Components	PCC	Practical	0	0	3	1.5
39	AE640502	Integrated Aptitude Skills - II (Lower)	EEC	skill based course	0	0	1	0.5#
40		In plant Training (2 Weeks)	IMC	-				0
		Total			17	0	9	21

	Sem - 05											
41	AE650207	Propulsion - II (Rocket Propulsion)	PCC	Theory with Practical Component	2	0	2	3				
42	AE650208	Aircraft Structures - II	PCC	Theory with project	3	0	0	3				
43	AE650209	Aerodynamics - II	PCC	Theory	2	1	0	3				
44		Institute Elective -2	IEC	Theory	3	0	0	3				
45		Professional Elective-3	PEC	Theory	3	0	0	3				
46		Professional Elective-4	PEC	Theory	3	0	0	3				
47	AE650304	Aircraft Structures Laboratory	PCC	Practical	0	0	3	1.5				
48	AE650305	Surface and Solid Modelling of Aircraft Components	PCC	Practical	0	0	3	1.5				
49	AE650503	Integrated Aptitude Skills - I (Higher)	EEC	skill based course	0	0	2	1#				
50	AE650801	Programme Mandatory	PMC	Theory	2*	0	0	0				
		Total			16	1	10	21				

	Sem - 06											
51	AE660210	Aircraft Structures and Repair	PCC	Theory with Practical Component	2	0	2	3				
52	AE660211	Flight Dynamics	PCC	Theory with project	3	0	0	3				
53	AE660212	Finite Element Analysis	PCC	Theory	2	1	0	3				
54		Institute Elective -3	IEC	Theory	3	0	0	3				
55		Professional Elective-5	PEC	Theory	3	0	0	3				
56		Professional Elective-6	PEC	Theory	3	0	0	3				
57	AE660306	Aircraft Design Project - I	PCC	Practical	0	0	3	1.5				
58	AE660307	Simulation of Aircraft Structural Components	PCC	Practical	0	0	3	1.5				

59	ME660504	Training in centre for Excellence in Robotics, Sensor and PLC	EEC	Skill based course	0	0	2	1#
60	IM660403	Professional Ethics	IMC	Theory	2*	0	0	0
61		Internship	IMC					0
		Total			16	1	10	21

			Sem - 07					
62	AE670213	Computational Fluid Dynamics	PCC	Theory	2	1	0	3
63	AE670214	Quality and Reliability Engineering	PCC Theory with project		3	0	0	3
64	AE670215	Composite Materials and Structures	PCC	PCC Practical 2 Component		0	2	3
65		Institute elective -3	IEC	Theory	3	0	0	3
66		Professional elective-7	PEC	Theory	3	0	0	3
67		Professional elective-8	PEC	Theory	3	0	0	3
68	AE670308	Aircraft Design Project - II	PCC	Practical	0	0	3	1.5
69	AE670309	Computational Fluid Dynamics Laboratory	PCC	Practical	0	0	3	1.5
70	MG670019	Innovation Entrepreneurship and Start-ups	ICC	Theory	3	0	0	3
71	AE670505	Advanced Career Development	EEC	Skill based course	0	0	2	1#
		Total			19	1	10	24

Sem - 08										
72	AE680506	Project Work	EEC	Practical	0	0	20	10		
	SUMMARY									
SEM	1	2	3	4	5	6	7	8		
Credit	21	22	21	21	21	21	24	10		
Total			161							

Abbreviation	Particulars
ICC	Institute core Course (includes Basic science, Engineering science, humanities & social science including management course)
PCC	Professional Core Course
PEC	Professional Elective Course
IEC	Institute Elective Course (open electives)
EEC	Employability Enhancement course
IMC	Institute Mandatory Course
РМС	Programme Mandatory Course

Vertical-1 - AERODYNAMICS AND PROPULSION

S. No.	Course Code	Course Title	Classi	fication	L	Т	Р	С
1	AE606101	Aircraft Design	PEC	Theory	3	0	0	3
2	AE606102	Advanced Propulsion Systems	PEC	Theory	3	0	0	3
3	AE606103	Hypersonic Aerodynamics	PEC	Theory	3	0	0	3
4	AE606104	High Speed Aerodynamics (NPTEL)	PEC	Theory	3	0	0	3
5	AE606105	Wind Tunnel Techniques (NPTEL)	PEC	Theory	3	0	0	3
6	AE606106	Structural Dynamics (NPTEL)	PEC	Theory	3	0	0	3
7	AE606107	Aerospace Propulsion (NPTEL)	PEC	Theory	3	0	0	3
8	AE606108	Gas Dynamics and Jet Propulsion	PEC	Theory	3	0	0	3

Vertical-2 - AEROSPACE STRUCTURES

S. No.	Course Code	Course Title	Classi	fication	L	Т	Р	С
1	AE606201	Fatigue and Fracture Mechanism (NPTEL)	PEC	Theory	3	0	0	3
2	AE606202	Experimental Stress Analysis (NPTEL)	PEC	Theory	3	0	0	3
3	AE606203	Aerospace Materials	PEC	Theory	3	0	0	3
4	AE606204	Additive Manufacturing (NPTEL)	PEC	Theory	3	0	0	3

5	AE606205	Non-Destructive Testing and Evaluation (NPTEL)	PEC	Theory	3	0	0	3
6	AE606206	Aerospace Manufacturing Technology	PEC	Theory	3	0	0	3
7	AE606207	Aircraft Stress Analysis	PEC	Theory	3	0	0	3
8	AE606208	Nano Materials and Aero Applications	PEC	Theory	3	0	0	3
9	AE606209	Aircraft High Temperature Materials	PEC	Theory	3	0	0	3

Vertical-3-AVIONICS AND DRONE TECHNOLOGY

S. No	Course Code	Course Title	Class	ification	L	Т	Р	С
1	AE606301	Avionics	PEC	Theory	3	0	0	3
2	AE606302	Design of UAV Systems (NPTEL)	PEC	Theory	3	0	0	3
3	AE606303	Aerodynamics of Drones	PEC	Theory	3	0	0	3
4	AE606304	Control Engineering	PEC	Theory	3	0	0	3
5	AE606305	Introduction to PLC (NPTEL)	PEC	Theory	3	0	0	3
6	AE606306	Drone Technologies	PEC	Theory	3	0	0	3
7	AE606307	Geographical Information Systems (NPTEL)	PEC	Theory	3	0	0	3
8	AE606308	Guidance and Control	PEC	Theory	3	0	0	3
9	AE606309	Navigation and Communication Systems	PEC	Theory	3	0	0	3

Vertical-4-ROCKETS AND MISSILES

S. No.	Course Code	Course Title	Class Course	ification Category	L	Т	Р	С
1	AE606401	Basics of Rockets and missiles	PEC	Theory	3	0	0	3
2	AE606402	Missile Aerodynamics	PEC	Theory	3	0	0	3
3	AE606403	Space Mechanics	PEC	Theory	3	0	0	3
4	AE606404	Cryogenics (NPTEL)	PEC	Theory	3	0	0	3
5	AE606405	Remote Sensing Concepts	PEC	Theory	3	0	0	3
6	AE606406	Missile Guidance and Control (NPTEL)	PEC	Theory	3	0	0	3
7	AE606407	Chemical Rockets	PEC	Theory	3	0	0	3
8	AE606408	Launch Vehicle Technology	PEC	Theory	3	0	0	3
9	AE606409	Combustion Theory	PEC	Theory	3	0	0	3

S. No.	Course Code	Course Title	Class	ification	L	Т	Р	С
1	AE606501	Airframe Maintenance and repair	PEC	Theory	3	0	0	3
2	AE606502	Aircraft General Engineering and Maintenance and Practices.	PEC	Theory	3	0	0	3
3	AE606503	Civil Aviation Regulations	PEC	Theory	3	0	0	3
4	AE606504	Air Traffic Control (NPTEL)	PEC	Theory	3	0	0	3
5	AE606505	Aircraft Engine Maintenance and Repair	PEC	Theory	3	0	0	3
6	AE606506	Aircraft Overhauling	PEC	Theory	3	0	0	3
7	AE606507	Sensors and Instrumentation (NPTEL)	PEC	Theory	3	0	0	3
8	AE606508	Helicopter Maintenance (NPTEL)	PEC	Theory	3	0	0	3
9	AE606509	Air Transportation and Aircraft Maintenance Engineering	PEC	Theory	3	0	0	3

Vertical-5- AIRCRAFT MAINTENANCE

Vertical-6 - AERO MANAGEMENT AND SAFETY

S. No.	Course Code	Course Title	Class	sification	L	Т	Р	С
1	AE606601	Airport Management	PEC	Theory	3	0	0	3
2	AE606602	Crisis Management in Aviation Industry	PEC	Theory	3	0	0	3
3	AE606603	Aircraft Production and Planning Management	PEC	Theory	3	0	0	3
4	AE606604	Operational Management	PEC	Theory	3	0	0	3
5	AE606605	Operation and Supply Chain Analytics	PEC	Theory	3	0	0	3
6	AE606606	Essentials of Entrepreneurship (NPTEL)	PEC	Theory	3	0	0	3
7	AE606607	Industrial Fire Safety (NPTEL)	PEC	Theory	3	0	0	3
8	AE606608	Energy Conservation and Management (NPTEL)	PEC	Theory	3	0	0	3
9	AE606609	Air Lines Operation and Scheduling	PEC	Theory	3	0	0	3

S. No.	Course Code	Course Title	Classi	fication	L	Т	Р	С
1	AE606701	Design of Gas Turbine Engine Components	PEC	Theory	3	0	0	3
2	AE606702	Vibration and aero elasticity (NPTEL)	PEC	Theory	3	0	0	3
3	AE606703	Manufacturing process	PEC	Theory	3	0	0	3
4	AE606704	Turbo Machines (NPTEL)	PEC	Theory	3	0	0	3
5	AE606705	Helicopter Theory (NPTEL)	PEC	Theory	3	0	0	3
6	AE606706	Design of Non-Air Breathing Engine	PEC	Theory	3	0	0	3
7	MA606707	Mechatronics (NPTEL)	PEC	Theory	3	0	0	3
8	AE606304	Project Management	PEC	Theory	3	0	0	3
9	AE606709	Computer Aided Design and Analysis	PEC	Theory	3	0	0	3

Vertical-7-DIVERSIFIED COURSES

Vertical-8- DIVERSIFIED COURSES

S. No.	Course Code	Course Title	Classification	Course Category	L	Т	Р	С
1	AE606801	Boundary Layer Theory (NPTEL)	PEC	Theory	3	0	0	3
2	AE606802	Aero Elasticity	PEC	Theory	3	0	0	3
3	AE606803	Heat Transfer (NPTEL)	PEC	Theory	3	0	0	3
4	AE606804	Grid Generation Techniques	PEC	Theory	3	0	0	3
5	AE606805	Advanced Vehicle Engineering	PEC	Theory	3	0	0	3
6	AE606806	Post Processing in Drone Surveying	PEC	Theory	3	0	0	3
7	AE606807	Flexible Manufacturing Systems (Common to MAE, Mech and Aero)	PEC	Theory	3	0	0	3
8	MA606203	Aircraft Systems and Instruments	PEC	Theory	3	0	0	3
9	AE606808	MEMS (NPTEL)	PEC	Theory	3	0	0	3

SEMESTER - 3

AE630201 - AERO ENGINEERING THERMODYNAMICS

Course Cotogowy SEM 02	Course Type:	L	Т	P	С	
Course Category: SEM 05	Theory	3	0	0	3	
COURSE OBJECTIVES:						

• Aero Engineering Thermodynamics study includes quantitative analysis of machine and processes for transformation of energy and between work and heat.

- Laws of thermodynamics would be able to quantify through measurement of related properties, to these energies and their interactions.
- To develop basic concept of air cycle, gas turbine engines and heat transfer

UNIT 1: FUNDAMENTAL CONCEPT AND FIRST LAW

Concept of continuum, macroscopic approach, thermodynamic systems – closed, open and isolated. Property, state, path and process, quasi-static process, work, internal energy, enthalpy, specific heat capacities and heat transfer, SFEE, application of SFEE to jet engine components, First law of thermodynamics, relation between pressure, volume and temperature for various processes, Zeroth law of thermodynamics

UNIT 2: SECOND LAW AND ENTROPY

Second law of thermodynamics – Kelvin Planck and Clausius statements of second law. Reversibility and Irreversibility, Thermal reservoir, Carnot theorem. Carnot cycle, Reversed Carnot cycle, efficiency, COP, Thermodynamic temperature scale - Clausius inequality, Concept of entropy, Entropy change for various processes. Mixing of fluids.

UNIT 3: AIR STANDARD CYCLES

Otto, Diesel, Dual, Ericsson, Atkinson, Stirling and Brayton cycles - air standard efficiency -mean effective pressure

UNIT 4: FUNDAMENTALS OF VAPOUR POWER CYCLES

Properties of pure substances – solid, liquid and vapour phases, phase rule, p-v, p-T, T-v, T-s, h-s diagrams, p-v-T surfaces, thermodynamic properties of steam - calculations of work done and heat transfer in non-flow and flow processes - standard Rankine cycle, Reheat and Regeneration cycle. Heat rate, Specific steam consumption, Tonne of refrigeration.

UNIT 5: BASICS OF PROPULSION AND HEAT TRANSFER

Classification of jet engines - basic jet propulsion arrangement – Engine station number, thrust equation – Specific thrust, SFC, TSFC, specific impulse, actual cycles, isentropic efficiencies of jet engine components, polytropic efficiency, conduction in parallel, radial and composite wall, basics of convective and radiation heat transfer.

TOTAL: 45 PERIODS

9

Q

9

Q

0

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1: Able to relate laws of thermodynamics to jet engine components.

CO2: Analysis principle operation of piston engine and jet engines.

CO3: Able to identify efficient cycle of air and jet engines.

CO4: Capable to illustrate condition of working medium.

CO5: Eligible to recognize and calculate heat transfer in complex systems involving several heat transfer mechanisms.

CO'S PO'S&PSO'S MAPPING

	T			I		I	I		I		I	I	I	I	
	PO	PS	PS	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
CO1	3	3	2	2	3	-	-	-	-	1	-	1	-	3	3
CO2	3	2	2	2	1	-	-	-	-	1	-	1	-	3	2
CO3	2	3	2	3	2	1	1	-	-	-	1	2	2	2	1
CO4	2	2	2	3	2	1	1		-	-	1	2	2	1	1
CO5	3	2	3	3	3	1	-1		1	1	2	2	2	2	2
-				•											

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Nag.P.K., "Engineering Thermodynamics", Tata McGraw-Hill, New Delhi, 2013.

2. Rathakrishnan E., "Fundamentals of Engineering Thermodynamics", Prentice-Hall India, 2005.

3. Yunus A. Cengel and Michael A. Boles, "Thermodynamics: An Engineering Approach" McGraw-Hill Science/Engineering/Math; 7thedition 2010

REFERENCE BOOKS:

1. Arora C.P, "Thermodynamics", Tata McGraw-Hill, New Delhi, 2003.

2. Holman.J.P., "Thermodynamics", 3rd Edition, McGraw-Hill, 2007.

3. Merala C, Pother, Craig W, Somerton, "Thermodynamics for Engineers", Schaum Outline Series, Tata McGraw-Hill, New Delhi, 2004.

WEB RESOURCES:

1. Introduction to boundary layers: <u>https://nptel.ac.in/courses/112106190</u>

ME630202 - FLUID MECHANICS AND MACHINERY

Course Cotogony, SEM 03	Course Type:	L	Т	Р	С	
Course Category: SEM 05	Theory	3	0	0	3	
COURSE OBJECTIVES.						

- To introduce to the mechanics of fluids through a thorough understanding of the properties of the fluids.
- To familiarized the students with conservation laws and dimensional analysis to fluid and flow problems.
- To analysis and obtain knowledge the concept of flow through pipes.
- To gain knowledge in the turbine and also various types of turbines and performance curve characteristics are to be studied.
- To analysis functioning and operation of hydraulic pumps.

UNIT 1:FLUID PROPERTIES & CHARACTERISTICS

Basic Concept and fluid Properties - Density - Specific Weight - Specific Gravity - viscosity - surface tension - capillary rise -compressibility - Hydrostatic Law - Pressure Variation in static fluid -Hydrostatic force on a submerged plane surfaces – Location of hydrostatic force - Manometers – Simple U tube and differential manometers - Buoyancy - Meta-centric height - determination of stability of floating bodies and submerged bodies.

UNIT 2: EQUATIONS OF MOTION AND DIMENSIONAL ANALYSIS

Basic Equations of Motion - Types of fluid flow - Continuity Equation, momentum and energy equations - Euler's and Bernoulli's Equation and its applications - Orifice meter - Venturi meter - Pitot tube. Dimensional Analysis - Buckingham's ∏ Theorem – Non dimensional numbers – Similitude - Model studies.

UNIT 3: FLOW THROUGH PIPES

Laminar and Turbulent flow - Reynolds experiment - Major and minor losses in pipes - Darcy weisbach's equation and Chezy's formula – Pipes in series, parallel and branched – Total energy line – Hydraulic gradient line – Equivalent pipe.

UNIT 4:HYDRAULIC TURBINES

Classification of hydraulic turbines - Working principle of Pelton wheel, Francis and Kaplan turbines -Velocity triangles - Work done - Specific Speed - Performance Curve for turbine -Draft tube -Hydraulic turbine characteristics.

9

9

9

UNIT 5: HYDRAULIC PUMPS

Centrifugal Pumps - Definition – Operations – Velocity Triangles – Performance curves – Cavitations – Multi staging. Reciprocating Pumps - Operation – Slip – indicator Diagram – Separation – Air vessels, and performance curve, Cavitations in pumps Rotary pumps Working Principles of gear and vane pumps.

TOTAL: 45 PERIODS

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1: Analysis the basic fluid mechanics through the properties of various fluids.

CO2: Ability to analyse the fluid flow problems with the applications of momentum and energy equations.

CO3: Analysis and apply knowledge in the flow concepts through pipes.

CO4: Analysis the types of turbines and also the characteristics of turbine has been studied.

CO5: Analysis the basic function and operation of pumps and performance curves has been studied.

CO'S PO'S&PSO'S MAPPING

	PO	PS	PS	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
CO1	3	2	2	2	1	-	-	-	-	-	-	1	2	-	-
CO2	3	3	2	1	1	-	-	-	-	-	-	2	1	-	-
CO3	2	1	2	2	1	-	-	-	-	-	-	2	2	1	1
CO4	2	1	2	2	2	-	-	-	-	-	-	1	2	-	1
CO5	3	2	3	3	1	-	-	-	-	-	-	1	2	1	1

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. R. K. Bansal. "Fluid Mechanics & Hydraulics Machines", 9th Edition, Laxmi Publications, 2010.

2. BModi P. N., Seth S. M., "Hydraulics and Fluid Mechanics", Standard Book House, 2011..

3.Govinda Rao N. S., "Fluid Flow Machines", 2nd Edition, Tata McGraw Hill, New Delhi, 1990, Digitized 2008.

REFERENCE BOOKS:

1. Kumar K. L., "Engineering Fluid Mechanics", 8th Edition, Eurasia Publication, 2010.

2.Streeter V.L. and Wylie E.B., "Fluid Mechanics ", McGraw Hill, 1983.

3. Ramamirtham S., "Fluid Mechanics, Hydraulics and Fluid Machines ", DhanpatRai& Sons, Delhi, 1988.

4. Douglas. J. F., Gasiorek.J.M. ,Swaffield.J.A., "Fluid Mechanics ELBS", 4th Edition, Prentice Hall, 2000.

WEB RESOURCES:

1. Theory of Elasticity: https://nptel.ac.in/courses/105105177

AE630202- SOLID	MECHANICS FOR AERONAU	FICAL E	NGINE	EERIN	G	
Course Cotogony SEM 02	Course Turner Theorem	L	Т	Р	C	
Course Category: SEM 03	Course Type: Theory	3	0	0	3	
COURSE OB IECTIVES.						-

- To gain knowledge of simple stresses, strains and deformation in components due to external loads.
- To assess stresses and deformations through mathematical models of beams, twisting bars or combinations of both.

9

9

- To analysis the effect of component dimensions and shape on stresses and deformations.
- To evaluate the torsion in the shaft and spring
- To analyse the strength of column and thin cylinder

UNIT 1: SIMPLE STRESS AND STRAIN

Rigid and Deformable bodies – Stresses; Tensile, Compressive and Shear – stresses in simple and compound bars under axial load - Elastic constants and it's relations - Thermal stress – Principle stress and strain due to combination of stresses – Mohr's circle.

UNIT 2: STRESSES IN BEAMS

Types of beams: Supports and Loads – Shear force and Bending Moment in beams –Cantilever, Simply supported and Overhanging beams – Stresses in beams – Theory of simple bending – Stress variation along the length and in the beam section – Effect of shape of beam section on stress induced – Shear stresses in beams – Shear flow.

UNIT 3: DEFLECTION OF BEAMS

Elastic curve of Neutral axis of the beam under normal loads – Evaluation of beam deflection and slope: Double integration method, Macaulay Method, and Moment-area Method.

UNIT 4: TORSION & SPRINGS

Stresses and strains in pure torsion of solid circular shafts and hollow circular shafts - Power transmitted by shafts subjected to combination of bending and torsion. Open and closely coiled springs under torque and moment – Laminated Spring.

UNIT 5: COLUMNS, THIN CYLINDERS AND SPHERES9Columns – End conditions – Equivalent length of a column – Euler equation –Slenderness ratio – Rankineformula for columns - Thin Cylinders and Spheres - Derivation of formulae and calculations of hoop

stress, longitudinal stress in a cylinder, and sphere subjected to internal pressures.

TOTAL: 45 PERIODS

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1: Understand the concepts of stress and strain in simple and compound bars, the importance of principal stresses and principal planes.

CO2: Understand the load transferring mechanism in beams and stress distribution due to shearing force and bending moment.

CO3: Apply basic equation of simple torsion in designing of shafts and helical spring

CO4: Calculate the slope and deflection in beams using different methods.

CO5: Analyze and design thin and thick shells for the applied internal and external pressures.

CO'S PO'S&PSO'S MAPPING

	PO	PS	PS	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	O3
CO1	3	2	2	1	1	-	-	-	-	-	-	1	2	-	-
CO2	2	2	2	1	1	-	-	-	-	-	-	1	-	2	1
CO3	2	2	3	-3	1	-	-	-	-	-	-	2	2	-	-
CO4	2	2	2	3	1	-	-	-	-	-	-	2	-	-	-
CO5	2	3	2	3	-1	-	-	-	-	-	-	2	-	-	

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Beer P F and Johson (Jr) E R, "Mechanics of Materials", SI Version, McGraw Hill, NY

2. Bhavikatti. S, "Solid Mechanics", Vikas Publishing House Pvt. Ltd., New Delhi, 2013.

3. Popov Eger P., "Engineering Mechanics of solids", Prentice Hall, New Delhi, 1998.

REFERENCE BOOKS:

1. Jindal U.C., "Strength of Materials", Galgotia Publication, New Delhi, II Edition, 2008.

2. Sadhu Singh, "Strength of Materials", Khanna Publishers, New Delhi, 2000.

3. Pytel A H and Singer F L, "Strength of Materials", Harper Collins, New Delhi.

WEB RESOURCES:

1.Aeroelasticity - https://nptel.ac.in/courses/101104005

AE630203 - FUNDA	MENTALS	OF AER	ONA	UTIC	CS		
Course Category: SEM 03	Course Type: Theory	L 3	T 0	F O)	C 3	
COURSE OBJECTIVES:							
• To analysis the Historical evaluation	on of Airplane	S					
• To study the different component s	systems and fu	nctions					
• To analysis basic properties and pri-	inciples behin	d the flig	,ht				
• To evaluate the different structures	& construction	on					
• To impart knowledge about the var	rious types of	power pl	ants us	sed in	n aire	crafts	
	1						0
UNIT I: AIRCRAFT CONFIGURATIONS Priof History Different types of flight yeld) violog olgosifi	ationa	Comp	anont	e of	on oi	y relance and their
Bhei filstory - Different types of hight ven		cations.	compe		.5 01		
functions. Conventional control, Powered con	trol, Basic ins	truments	for fly	yıng,	typı	cal sys	items for control
actuation.							
UNIT 2: INTRODUCTION TO PRINCIPLI	ES OF FLIGI	T					9
Physical properties and structure of the atm	nosphere, Ten	perature	, pres	sure	and	altitud	le relationships,
Newtons law of motion, Evolution of lift, drag	g and moment	, maneuv	vers, D	iffere	ent t	ypes of	f drag.
UNIT 3: AERODYNAMICS							9
Aerodynamic forces on aircraft – aerofoil c	haracteristics	- aspect	ratio,	win	g lo	ading,	Mach number-
centre of pressure and aerodynamic centre - life	ft, drag curves						
UNIT 4: AIRPLANE STRUCTURES AND	MATERIALS	8					9
Aircraft structures - Loads - General types	of construct	ion, Mo	nocoq	ue, s	emi	-mono	coque, geodesic
constructions Typical wing and fuselage struc	cture. Metallic	and nor	n-metal	llic n	nater	rials, U	Use of aluminum
alloy, titanium, stainless steel and composite	materials.stres	sses and	strains	s –str	ess s	strain c	liagrams ,Factor
of safety							
UNIT 5: POWER PLANTS USED							9
Basic ideas about piston, turboprop and jet	engines, Use	of prop	eller a	and j	ets	for thr	ust production.,
comparative merits, Principles of operation of	f rocket, types	of rocke	ets and	appl	icati	ons.	
]	OTA	L: 45 PERIODS
COURSE OUTCOMES: At the end of the con	urse, the stude	nt will be	able to	0			

CO1: Ability to identify the types & classifications of components and control systems.

CO2: Analysis basic concepts of flight & Physical properties of Atmosphere.

CO3: Ability to understand the basic aerodynamics and airfoil characteristics.

CO4: An ability to differentiate the types of fuselage and constructions.

CO5: Different types of Engines and principles of Rocket operations.

CO'S PO'S&PSO'S MAPPING

	PO	PS	PS	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	03
CO1	3	1	1	1	1	-	-	-	-	-	-	1	2	-	-
CO2	3	2	2	2	2	-	-	-	-	-	-	1	-	-	-
CO3	3	2	2	1	1	-	-	-	-	-	-	2	2	2	1
CO4	3	2	1	1	1	-	-	-	-	-	-	2	2	-	1
CO5	2	1	1	1	1	-	-	-	-	-	-	2	2	2	1

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Anderson, J.D., Introduction to Flight, McGraw-Hill; 8th edition, 2015.

2. Stephen.A. Brandt, Introduction to aeronautics: A design perspective, 2nd edition, AIAA Education Series, 2004.

REFERENCE BOOKS:

1.Kermode, A.C. Flight without Formulae, Pearson Education; Eleventh edition, 2011

2. Kermode, A.C., "Mechanics of flight", Himalayan Book, I edition 1997

WEB RESOURCES:

1. Heat Transfer: https://nptel.ac.in/courses/103105140

FLUID MEC	HANICS AND MACHINE	RY LA	BORA	TORY	ζ	
Course Category: Program	Course Turner Due stiegt	L	Т	Р	C	
Core	Course Type: Practical	0	0	3	1.5	
COURSE OBJECTIVES:						
• To study the flow mea	surement and the perform	nance c	of fluid	l macł	ninery	by performing
practical experiments in l	aboratory.					

LIST OF EXPERIMENTS

1. Calibration of venturimeter

2. Pressure measurement with pitot static tube

3. Determination of pipe flow losses.

4. Verification of Bernoulli's theorem

5. Flow visualization by Heleshaw apparatus

6. Performance test on centrifugal pumps

7. Performance test on reciprocating pumps

8. Performance test on pelton wheel turbine.

9. Performance test on Francis turbine.

List of Requirements:

10. Determination of Viscosity of a Fluid.

TOTAL: 45 PERIODS

S.NO.	DESCRIPTION OF EQUIPMENT	QUANTITY
1.	Venturimeter set up	01
2.	Pipe friction setup	01
3.	Pitot tube setup	01
4.	Jet pump	01
5.	Submersible pump	01
6.	Centrifugal pump	01
7.	Reciprocating pump	01
8.	Pelton wheel turbine and francis turbine	01
9.	Viscosity meter	01
10.	Hele-shaw apparatus	01

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1: Explain and apply the basic principles of pitot static tube

CO2: Determine discharge characteristics of flow meters.

CO3: Analysis of flow visualisation

CO4Analysis the concept and operation of turbines

CO5: Able to understand the viscous flow of fluids

TEXT BOOKS:

1.R. K. Bansal. "Fluid Mechanics & Hydraulics Machines", 9th Edition, Laxmi Publications, 2010.

2. BModi P. N., Seth S. M., "Hydraulics and Fluid Mechanics", Standard Book House, 2011..

3.Govinda Rao N. S., "Fluid Flow Machines", 2nd Edition, Tata McGraw Hill, New Delhi, 1990, Digitized 2008.

REFERENCE BOOKS:

1. Kumar K. L., "Engineering Fluid Mechanics", 8th Edition, Eurasia Publication, 2010.

2. Streeter V.L. and Wylie E.B., "Fluid Mechanics ", McGraw Hill, 1983.

CO'S PO'S&PSO'S MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1 2	PSO 1	PSO 2
CO1	3	2	2	2	2	_	1	_	1	-	-	2	1	1
CO2	3	3	3	2	2	_	1	_	1	_	_	2	1	1
CO3	3	2	1	2	- 1	-	1	-	1	_	_	2	1	1
CO4	3	1	1	1	1	_	1	_	1			2	1	1
CO5	3	1	2	2	1	_	1		1			2	1	1
	1- lov	v, 2 - m	nedium	. 3 - hi	gh. '-'	no cor	relatio	n	1					II

,	/	8 /

AE630301 - SOLID MECH	IANICS AND THERMAL	ENGIN	VEERI	NG L	ABORA	ATORY
Course Category: Program	Course Turner Dreatical	L	Т	P	С	
Core	Course Type: Practical	0	0	3	1.5	
COURSE OBJECTIVES:						

• To develop the knowledge in testing the materials for hardness, fatigue, impact, tension and torsion

• To enhance the basic knowledge and ideas in applied thermodynamics.

LIST OF EXPERIMENTS

1.Brinell Hardness test.

2.Stress(Tension) strain characteristics and determination of young's modulus of different materials .

- 3. Torsion test.
- 4. Testing of springs.
- 5.Determination of effectiveness of a parallel flow &counter flow heat exchanger.
- 6. Performance test on a 4-stroke engine.
- 7. COP of a vapour compression refrigeration rig.
- 8. COP of a vapour compression air-conditioning rig.

9. Determination of Thermal Conductivity of solid.

10. Determination of Thermal Resistance of a Composite wall.

TOTAL: 45 PERIODS

NO.	DESCRIPTION OF EQUIPMENT	QUANTITY
11.	Hardness Testing Machine	01
12.	Universal Testing Machine	01
13.	Torsion Test Machine	01
14.	Spring Testing Machine	01
15.	Four stroke twin cylinder Diesel Engine	01
16.	Parallel and Counter flow heat exchanger test rig	01
17.	Vapour compression refrigeration test rig	01
18.	Vapour compression airconditioning test rig	01
19.	Conductive heat transfer setup	01
20.	Composite wall	01
URSE	OUTCOMES: At the end of the course, the student will be ab	le to

1: Test and quantify the mechanical properties of Engineering Materials.

CO2: Acquire knowledge on bending properties of beams.

CO3: Estimate the performance of heat exchangers

CO4: Apply principles of convective heat transfer characteristics to practical systems.

CO5: Acquire Knowledge on ignition aspects of fuels and thermal properties of fuels

TEXT BOOKS:

1. Beer P F and Johson (Jr) E R, "Mechanics of Materials", SI Version, McGraw Hill, NY

2. Bavikatti. S, "Solid Mechanics", Vikas Publishing House Pvt. Ltd., New Delhi, 2013.

3. Holman.J.P., "Thermodynamics", 3rd Edition, McGraw-Hill, 2007.

REFERENCE BOOKS:

1. Jindal U.C., "Strength of Materials", Galgotia Publication, New Delhi, II Edition, 2008.

2. Rathakrishnan E., "Fundamentals of Engineering Thermodynamics", Prentice-Hall India, 2005.

CO'S PO'S&PSO'S MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	2	2	1	2	1	1	1	-	1	-	-	2	1	1
CO2	3	2	3	2	2	1	1	-	1	-	1	2	1	1
CO3	3	2	1	2	1	1	1	-	1	-	1	2	1	1
CO4	3	1	3	1	1	1	1	-	1	-	1	2	1	1
CO5	3	1	1	1	1	1	1	-	1	I	-	2	1	1
	1- lov	w, 2 - n	nedium	, 3 - hi	gh, '-'	no cor	relatio	n						

SEMESTER - 4

AE640204 -	AERODYNAMICS -	I				
Course Category: SEM 04	Course Type:		T	P	C	
COURSE OBJECTIVES:	Ineory	3	U	U	3	
• To introduce the concepts of m	ass, momentum and	l energ	y con	servatio	n rela	ting to
aerodynamics.						
• To make the student understand the	concept of vorticity,	irrotatic	onality,	theory	of airf	oils and
wing sections.						
• To introduce the basics of viscous flo	w.					
UNIT 1 INTRODUCTION TO LOW-SPEED	FLOW					9
Continuity, Momentum, energy equations, inco	mpressible Bernoulli'	s equati	on. Ci	rculatio	n and	vortices,
Kelvin's theorem, streamline, stream function, ir	rotational flow, potent	tial func	tion, ec	quipoter	ntial lin	es,
UNIT 2 TWO DIMENSIONAL INVISCID IN	COMPRESSIBLE FI	LOW				9
Elementary flows and their combinations, Idea	al Flow over a circu	lar cyli	nder, D)'Aleml	pert's p	baradox,
Magnus effect, Kuttajoukowski's theorem, star	rting vortex, kutta co	ndition,	real f	low ov	er smo	oth and
rough cylinder.						
UNIT 3 AIRFOIL THEORY						9
Cauchy-Riemann relations, complex potential, r	nethodology of confor	rmal tra	nsform	ation, K	LuttaJo	ukowski
transformation and its applications, Karmann-Tr	efftz profiles, thin airf	oil theor	y and i	ts appli	cations	
UNIT 4 SUBSONIC WING THEORY						9
Vortex filament, biot and savart law, bound vor	tex and trailing vortex	k, horse	shoe v	ortex, I	Prandtl'	s lifting
line theory and its limitations.						
UNIT 5:INTRODUCTION TO BOUNDARY I	LAYER THEORY					9
Boundary layer and boundary layer thickness	s, displacement thick	ness, n	noment	um thio	ckness,	energy
thickness, boundary layer equations for a stead	dy, two dimensional i	ncompr	essible	flow, I	oounda	ry layer
growth over a flat plate, critical Reynolds number	er, blasius solution, bas	sics of t	urbulen	t flow.		
			T	OTAL	: 45 PE	RIODS
COURSE OUTCOMES: At the end of the cours	e, the student will be a	ble to				
CO1: ability to understand the basic understanding	ng of low speed flow.					

CO2: ability to gain knowledge incompressible flow.

CO3: ability to apply airfoil theory to predict airfoil performance.

CO4: Ability to understand the subsonic wing theory.

CO5: Illustration about the explosive to boundary layer theory.

CO'S PO'S&PSO'S MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PS O 1	PS O 2	PS O 3
CO1	3	3	2	2	2	-	-	-	-	-	-	3	-	3	3
CO2	3	3	2	2	2	-	-	-	-	-	-	3	-	3	2
CO3	3	2	2	3	2	-	-	-	-	-	-	3	2	2	1
CO4	3	2	2	2	2	-	-	-	-	-	-	3	2	1	1
CO5	3	3	2	1	3	-	-	-	-	-	-	3	2	2	2

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS

1. Anderson, J.D., "Fundamentals of Aerodynamics", McGraw Hill Book Co. Fifth edition2011

2. E. RathaKrishnan "Theoretical Aerodynamics" Wiley First edition 2013.

3. Houghton, E.L., and Caruthers, N.B., "Aerodynamics for Engineering students", Edward Arnold publishers ltd., London, 1989.

REFERENCE BOOKS:

1. Clancy, L J.," Aerodynamics", Pitman, Company Second edition 1986.

2. Milne, L.H., Thomson, Theoretical Aerodynamics, Dover Publishing company Second edition 1985.

WEB RESOURCES:

1. Introduction to boundary layers: https://nptel.ac.in/courses/112106190

ME640205 - Aircraft Structures - I												
Course Cotogomy SEM 04	Course Type:	L	Т	Р	С							
Course Category: SEM 04	Theory	3	0	0	3							
COURSE OBJECTIVES:												

• To study different types of truss subjected to various types of loading and composite beams.

• To learn the analysis of propped cantilever and fixed beams.

• To learn the concepts of energy methods

- To understand the beam and column stress.
- To learn apply aircraft structural problems using failure theory.

UNIT 1: STATICALLY DETERMINATE STRUCTURES

Analysis of plane Truss - Method of joints – methods of sections-methods of shear- 3 D Truss - Plane frames- Composite beam.

UNIT 2: STATICALLY INDETERMINATE STRUCTURES

Propped Cantilever - Fixed-Fixed beams- Clapeyron's Three Moment Equation – Moment Distribution Method..

UNIT 3: ENERGY METHODS

Strain Energy in axial, bending and Torsional loads, shear loading – Castigliano's theorems- Maxwell's Reciprocal theorem, Unit load method - application to beams, frames, rings and trusses.

UNIT 4: COLUMNS

Columns with various end conditions – Euler's Column curve – Rankine's formula - Column with initial curvature - Eccentric loading – South well plot – Beam column-Beam column with different end conditions-stresses in beam columns.

UNIT 5: FAILURE THEORY

Maximum Stress theory – Maximum Strain Theory – Maximum Shear Stress Theory – Distortion Theory – Maximum stress energy theory -Maximum Strain energy theory – Application to aircraft Structural problems-Octahedral shear stress theory

TOTAL: 45 PERIODS

9

9

9

9

9

COURSE OUTCOMES: At the end of the course, the student will be able t

CO1: Ability to perform linear static analysis of determinate and indeterminate aircraft structural components

CO2: Calculate the response of statically indeterminate structures under various loading conditions.

CO3: Calculate the reactions of structures using strain energy concept.

CO4: Create a structure to carry the given load.

CO5: Examine the structural failures using failure theories

CO'S PO'S&PSO'S MAPPING

	DO1	DOJ	DO3		DO5	DOG	DO7	DOS	DOO	PO	PO	PO	PS	PS	PS
	FUI	FO2	FUS	r04	FOJ	FOO	FO/	FUð	109	10	11	12	O1	O2	O3
CO1	3	3	3	3	2	-	-	-	1	-	-	3	2	-	-
CO2	3	2	3	2	2	-	-	-	-	-	-	3	1	-	-
CO3	3	2	2	3	3	-	-	-	1	-	-	3	2	1	1
CO4	3	2	3	3	2	-	-	-	-	-	-	3	2	-	1
CO5	3	2	2	3	2	-	-	-	-	-	-	3	2	1	1

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Megson T M G, "Aircraft Structures for Engineering students" Elsevier Science and Technology, 2007

2. Timoshenko and Gere, "Mechanics of Materials", CBS publisher second edition 2006.

REFERENCE BOOKS:

1. Donaldson, B.K., "Analysis of Aircraft Structures - An Introduction", Cambridge university press II edition 2008.

2. Bruhn.E.F, "Analysis and Design of Flight Vehicle Structures", Tri-State Off-set Company, USA, Third edition 2006.

WEB RESOURCES:

1. Theory of Elasticity: https://nptel.ac.in/courses/105105177

Course Category: SEM 04Course Type: TheoryLTPC3003		AE640206- PROPULSION -	- I				
Course Category: SEN104Course Type: Theory3003	Course Cotogowy SEM 04	Course Types Theory	L	Т	Р	С	
	Course Category: SEM 04	Course Type: Theory	3	0	0	3	
COURSE OBJECTIVES:	COURSE OBJECTIVES:						

- To introduce basic concepts of jet propelled engines which are operated in atmosphere to students.
- To obtain knowledge in gas turbine engine.
- To obtain knowledge in subsonic and supersonic inlets for jet engine
- To obtain knowledge in the concepts of combustion chambers, nozzles and compressors for jet engine
- To understand the concept of nozzle and their importance in jet engine.
- To understand the concept of compressor.

UNIT 1: FUNDAMENTALS OF GAS TURBINE ENGINES

Illustration of working of gas turbine engine – The thrust equation – Factors affecting thrust – Effect of pressure, velocity and temperature changes of air entering compressor – Methods of thrust augmentation –

Characteristics of turboprop, turbofan and turbojet – Performance characteristics. 9 **UNIT 2: SUBSONIC AND SUPERSONIC INLETS FOR JET ENGINES** Internal flow and Stall in subsonic inlets - Boundary layer separation - Major features of external flow near a subsonic inlet – Relation between minimum area ratio and eternal deceleration ratio – Diffuser performance – Supersonic inlets – Starting problem on supersonic inlets – Shock swallowing by area variation - External declaration - Modes of inlet operation. 9 **UNIT 3: COMBUSTION CHAMBERS** Classification of combustion chambers - Important factors affecting combustion chamber design -Combustion process - Combustion chamber performance - Effect of operating variables on performance -Flame tube cooling – Flame stabilization – Use of flame holders – Numerical problems. 9 **UNIT 4: NOZZLES** Theory of flow in isentropic nozzles – nozzles and choking – Nozzle throat conditions –Nozzle efficiency – Losses in nozzles - Over expanded and under - expanded nozzles - Ejector and variable area nozzles -Interaction of nozzle flow with adjacent surfaces -Thrust reversal. 9 **UNIT 5: COMPRESSORS** Principle of operation of centrifugal compressor - Work done and pressure rise - Velocity diagrams -Diffuser vane design considerations – Concept of pre whirl, rotation stall and surge – Elementary theory of axial flow compressor - Velocity triangles - degree of reaction - Three dimensional - Air angle distributions for free vortex and constant reaction designs - Compressor blade design - Centrifugal and Axial compressor performance characteristics.

TOTAL: 45 PERIODS

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1: To analysis the basic concepts of gas turbine engines.

CO2: To analysis and gained knowledge in the subsonic and supersonic inlets for jet engine systems.

CO3: To analysis the classification of combustion chambers and flame cooling methods.

CO4: To analysis the nozzle theory and thrust reversal concept.

CO5:To analysis the principle of compressor and types of compressor performance characteristics

CO'S PO'S&PSO'S MAPPING

	DO1	DOD	DO2		DOS	DOC	DO7		DOO	РО	РО	PO	PS	PS	PS
	POI	PO2	PO3	PO4	P05	PO6	PO/	P08	P09	10	11	12	01	O2	03
CO1	2	-	3	-	-	-	-	-	-	-	-	2	2	-	-
CO2	-	3	-	2	-	-	-	-	2	-	-	-	-	2	1
CO3	2	-	3	-	-	-	-	-	-	-	-	2	2	I	-
CO4	2	-	-	2	3	-	-	-	-	-	-	-	-	I	-
CO5	-	3	-	-	-	-	-	-	-	-	-	-	-	-	

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1.Hill, P.G. & Peterson, C.R. "Mechanics & Thermodynamics of Propulsion" Second Edition Dorling Kindersley India 2009.

2. Mathur, M.L. and Sharma, R.P., "Gas Turbine, Jet and Rocket Propulsion", Standard Publishers & Distributors, Delhi, 2014..

3. Rolls Royce, "Jet Engine", 5th Edition, Rolls Royce Technical Publications, 2005. Fung, Y.C. An Introduction to the theory of Aeroelasticity, Dover Publications Inc., 2008.

REFERENCE BOOKS:

1. Blevins R.D, "Flow induced vibrations", Krieger Pub Co; 2 Reprint editions, 2001.1. Cohen, H. Rogers,

G.F.C. and Saravanamuttoo, H.I.H. "Gas Turbine Theory", Pearson education Limited, Sixth Edition 2009.

2. Oates, G.C., "Aero thermodynamics of Aircraft Engine Components", AIAA Education Series, New York, Third edition 2009.

3. Bill Gunston "The development of Jet and Turbine Aero Engines" Haynes Publishing U.K Fourth Edition,2006

WEB RESOURCES:

1.Aeroelasticity - https://nptel.ac.in/courses/101104005

	<u>AE640.</u>	302 - AERODYNAMICS L	ABOR	ATOF	RY		
Course Cat	egory: Program	Course Type: Practical	L	Τ	P	C	
Core		course Typer Tractical	0	0	4	2	
COURSE O)BJECTIVES:						
To famil	iarize the students in ba	sic aerodynamics and use of	wind t	unnels			
LIST OF E	XPERIMENTS						
1. Calibratio	on of subsonic wind tunr	nel.					
2. Flow visu	alization for different m	nodels in water flow channel	•				
3. Pressure d	listribution over smooth	n circular cylinder.					
4. Pressure d	listribution over symme	etric airfoil and estimation of	C L ar	nd CD.			
5. Pressure d	listribution over camber	red airfoil and estimation of	C L and	d CD.			
6. Pressure d	listribution over rough c	circular cylinder and estimat	ion of (C L and	l CD.		
7. Study exp	periment of flow over di	fferent models using Helesh	aw app	aratus.			
8.Calculation	n of Cl and Cd using for	rce balance system.					
9.Tuft Visua	lisation.						
						ТОТА	L: 45 PERIODS
List of Requ	uirements:						
					OU		TNK 7
S.NO.	DESCRIPTION OF	EQUIPMENT			Ųυ	ANTT	ΓY
S.NO. 1	DESCRIPTION OF Water flow channel &	EQUIPMENT a models			QU	ANTT 1	
S.NO. 1 2.	DESCRIPTION OF Water flow channel &Subsonic wind tunnel	EQUIPMENT a models				ANTT 1 1 set	
S.NO. 1 2. 3.	DESCRIPTION OF Water flow channel &Subsonic wind tunnelManometer, Pitot stati	EQUIPMENT c models ic tube				1 1 set 1	
S.NO. 1 2. 3. 4.	DESCRIPTION OF Water flow channel &Subsonic wind tunnelManometer, Pitot statiRough and smooth cir	EQUIPMENT a models ic tube rcular cylinder				1 1 set 1 1 each	
S.NO. 1 2. 3. 4. 5.	DESCRIPTION OF Water flow channel &Subsonic wind tunnelManometer, Pitot statiRough and smooth cirAirfoil pressure distribution	EQUIPMENT a models ic tube rcular cylinder bution models				ANTT11 set11 each1 each	
S.NO. 1 2. 3. 4. 5. COURSE 0	DESCRIPTION OF Water flow channel & Subsonic wind tunnel Manometer, Pitot stati Rough and smooth cir Airfoil pressure distrib DUTCOMES: At the end	EQUIPMENT c models ic tube rcular cylinder bution models d of the course, the student w	ill be at	ole to		ANTT 1 set 1 1 each 1 each	
S.NO. 1 2. 3. 4. 5. COURSE O CO1: Ability	DESCRIPTION OF Water flow channel & Subsonic wind tunnel Manometer, Pitot stati Rough and smooth cir Airfoil pressure distrib DUTCOMES: At the end y to use the fundamenta	EQUIPMENT c models ic tube rcular cylinder bution models d of the course, the student w l dynamic principles in aircr	ill be al	ole to	15.	ANTT 1 set 1 1 each 1 each	
S.NO. 1 2. 3. 4. 5. COURSE O CO1: Ability CO2: Description	DESCRIPTION OF Water flow channel & Subsonic wind tunnel Manometer, Pitot stati Rough and smooth cir Airfoil pressure distrib DUTCOMES: At the end y to use the fundamental aero	EQUIPMENT c models ic tube ccular cylinder bution models d of the course, the student w l dynamic principles in aircr odynamic and geometrical p	ill be all aft app	ole to lication	ns. ed to ex	ANTT 1 1 set 1 1 each 1 each xternal	flows over
S.NO. 1 2. 3. 4. 5. COURSE O CO1: Ability CO2: Description airfoils, wing	DESCRIPTION OF Water flow channel & Subsonic wind tunnel Manometer, Pitot stati Rough and smooth cir Airfoil pressure distrib DUTCOMES: At the end y to use the fundamental aero gs, and bluff bodies	EQUIPMENT models ic tube rcular cylinder bution models d of the course, the student w l dynamic principles in aircr odynamic and geometrical p	ill be all aft app	ole to lication es relat	ns. ed to ex	ANTT 1 1 set 1 1 each 1 each xternal	flows over
S.NO. 1 2. 3. 4. 5. COURSE O CO1: Ability CO2: Descri airfoils, wing CO3: Use the	DESCRIPTION OF Water flow channel & Subsonic wind tunnel Manometer, Pitot stati Rough and smooth cir Airfoil pressure distrib DUTCOMES: At the end y to use the fundamental ibe the fundamental aero gs, and bluff bodies in aerofoil theory to eva	EQUIPMENT c models ic tube rcular cylinder bution models d of the course, the student w l dynamic principles in aircr odynamic and geometrical p aluate the performance of thi	ill be all aft app ropertie	ole to lication es relat ils and	ns. ed to est	ANTT 1 1 set 1 1 each 1 each xternal ects of	flows over angle of attack
S.NO. 1 2. 3. 4. 5. COURSE O CO1: Ability CO2: Descri airfoils, wing CO3: Use th and camber.	DESCRIPTION OF Water flow channel & Subsonic wind tunnel Manometer, Pitot stati Rough and smooth cir Airfoil pressure distrib DUTCOMES: At the end y to use the fundamental ibe the fundamental aero gs, and bluff bodies in aerofoil theory to eva	EQUIPMENT c models ic tube ccular cylinder bution models d of the course, the student w l dynamic principles in aircr odynamic and geometrical p aluate the performance of thi	ill be all aft app ropertie	ole to lication es relat ils and	ns. ed to ex the eff	ANTT 1 1 set 1 1 each 1 each xternal ects of	flows over angle of attack
S.NO. 1 2. 3. 4. 5. COURSE O CO1: Ability CO2: Descri airfoils, wing CO3: Use th and camber. CO4: Able t	DESCRIPTION OF Water flow channel & Subsonic wind tunnel Manometer, Pitot stati Rough and smooth cir Airfoil pressure distrib DUTCOMES: At the end y to use the fundamental aero gs, and bluff bodies in aerofoil theory to eva	EQUIPMENT models ic tube rcular cylinder bution models d of the course, the student w l dynamic principles in aircr odynamic and geometrical p aluate the performance of thi flow patterns.	ill be all aft app ropertie	ole to lication es relat ils and	ns. ed to ex the eff	ANTT 1 1 set 1 1 each 1 each xternal ects of	flows over angle of attack
S.NO. 1 2. 3. 4. 5. COURSE O CO1: Ability CO2: Descri airfoils, wing CO3: Use th and camber. CO4: Able t	DESCRIPTION OF Water flow channel & Subsonic wind tunnel Manometer, Pitot stati Rough and smooth cir Airfoil pressure distrib DUTCOMES: At the end y to use the fundamental ibe the fundamental aero gs, and bluff bodies in aerofoil theory to eva	EQUIPMENT models ic tube rcular cylinder bution models d of the course, the student w l dynamic principles in aircr odynamic and geometrical p aluate the performance of thi flow patterns.	ill be all aft app ropertion	ole to lication es relat ils and	ns. ed to ex the eff	ANTT 1 1 set 1 1 each 1 each 1 each ects of	flows over angle of attack

TEXT BOOKS:

1. Anderson, J.D., "Fundamentals of Aerodynamics", McGraw Hill Book Co. Fifth edition2011

2. E. RathaKrishnan "Theoretical Aerodynamics" Wiley First edition 2013.

3. Houghton, E.L., and Caruthers, N.B., "Aerodynamics for Engineering students", EDWARD ARNOLD PUBLISHERS LTD., LONDON, 1989.

REFERENCE BOOKS:

1. Clancy, L J.," Aerodynamics", Pitman, Company Second edition 1986.

2. Milne, L.H., Thomson, Theoretical Aerodynamics, Dover Publishing company Second edition 1985.

CO'S PO'S&PSO'S MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	2	3	3	3	2	2	2	3	10	2	2	1	1
CO2	3	2	3	2	2	3	2	1	2	2	2	2	1	1
CO3	3	2	3	2	3	2	2	1	2	2	2	2	1	1
CO4	3	2	3	2	3	2	2	1	2	2	2	2	1	1
CO5	3	2	3	2	2	2	2	2	2	2	2	2	1	1
	1- lov	v, 2 - m	edium	, 3 - hig	gh, '-' 1	no corr	elatior	1						

AE640303 - COMPUTER AIDED DRAFTING OF AIRCRAFT COMPONENTS										
Course Category: Program	Comment Terra v Deve official	L	Τ	P	С					
Core	Course Type: Practical	0	0	4	2					
COURSE OBJECTIVES:										

To familiarize the students in basic aerodynamics and use of wind tunnels.

- To make the students familiarize with computational fluid dynamics and structural analysis software tools.
- To learn the concepts involved in designing a product
- To analysis the importance of specification paraments while designing

LIST OF EXPERIMENTS

- 1. Computer aided design of subsonic diffusers.
- 2. Computer aided design of supersonic diffusers
- 3. Computer aided design of a compressor blade.
- 4. Computer aided design of convergent nozzle

- 5. Computer aided design of a Converging-diverging nozzle.
- 6. Computer aided design of typical aircraft wing.
- 7. Computer aided design of typical fuselage structure.
- 8. Computer aided design of a landing gear.
- 9. Computer aided design of a launch vehicles.
- 10. Computer aided design of a re-entry vehicles.
- 11. Computer aided design of a Missiles.
- 12. Computer aided design of a Satellites.

TOTAL: 45 PERIODS

List of Requirements:

S.NO.	DESCRIPTION OF EQUIPMENT	QUANTITY
1	Desk top computers	30

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1: Compare commercial design software and understand its structure.

CO2: Deduct the aircraft and spacecraft components and solve engineering problems.

CO3: Explain a formal technical report and convey engineering specifications.

TEXT BOOKS:

1. Anderson, J.D., "Fundamentals of Aerodynamics", McGraw Hill Book Co. Fifth edition20111. Chairs Mcmahon and Jimmie Browne, "CAD / CAM: Principles, Practice and Manufacturing Management", Prentice Hall, 2nd Ed., 1999.

2. Ibrahim Zoid., "CAD / CAM", Theory and Practice, TMH, 2001.

3. Radhakrishnan, P., "CAD / CAM / CIM", New Age International, 2000.

REFERENCE BOOKS:

1. Chandupatla and Bolagundu., "Introduction to Finite Element Methods in Engineering", Pearson Education India, 4th Ed., 2015.

2 Mikell P. Groover, "CAD/CAM: Computer-Aided Design and Manufacturing", PHI, 2003.

3. Newman and Sproull, R.F., "Principles of interactive Computer Graphics", TMH, 1997.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PO	PO	PSO	PSO
	101	101	100	10.	1.00	100	10,	100	1 0 /	10	11	12	1	2
CO1	2	2	2	1	3	2	2	-	-	-	-	2	2	1
CO2	2	2	2	-	2	3	2	-	-	-	-	2	2	1
CO3	3	3	3	1	3	2	1	1	-	1	-	1	2	1
CO4	1	2	3	2	3	2	2	1	2	2	2	2	1	1
CO5	3	2	3	2	2	2	2	2	2	2	2	2	1	1
1- low, 2 - medium, 3 - high, '-' no correlation														

CO'S PO'S&PSO'S MAPPING
SEMESTER - 5

AE650207 - PROPULSION - II (ROCKET PROPULSION)

Course Category: Professional Core

Course Type: Theory with Practical Component

L T P C 2 0 2 3

9

9

9

9

COURSE OBJECTIVES:

•To impart knowledge about non-air-breathing and hypersonic propulsion methods.

•To gain knowledge about chemical Rocket Propulsion.

•To evaluate the solid rocket propulsion fundamentals.

•To impart knowledge on Liquid and Hybrid Rocket Propulsion

•To impart knowledge on Advanced Propulsion Systems

Unit 1: Hypersonic Air Breathing Propulsion

Introduction to hypersonic air breathing propulsion, hypersonic vehicles and supersonic combustionneed for supersonic combustion for hypersonic propulsion – salient features of scramjet engine and its applications for hypersonic vehicles – problems associated with supersonic combustion – engine/airframe integration aspects of hypersonic vehicles – various types scramjet combustors – fuel injection schemes in scramjet combustors.

UNIT II Chemical Rocket Propulsion

Operating principle – specific impulse of a rocket – internal ballistics – performance characteristics of rockets – simple rocket design problems – types of igniters- Rocket nozzle classification – preliminary concepts in nozzle-less propulsion – air augmented rockets – pulse rocket motors – static testing of rockets & instrumentation –safety considerations

UNIT III Solid Rocket Propulsion

Salient features of solid propellant rockets – selection criteria of solid propellants – estimation of solid propellant adiabatic flame temperature – propellant grain design considerations – erosive burning in solid propellant rockets – combustion instability – strand burner and T-burner – applications and advantages of solid propellant rockets.

UNIT IV Liquid and Hybrid Rocket Propulsion

Salient features of liquid propellant rockets – selection of liquid propellants – various feed systems and injectors for liquid propellant rockets -thrust control and cooling in liquid propellant rockets and the associated heat transfer problems – combustion instability in liquid propellant rockets – peculiar problems associated with operation of cryogenic engines – Introduction to hybrid rocket propulsion – standard and reverse hybrid systems- combustion mechanism in hybrid propellant rockets – applications

and limitations.

UNIT V Advanced Propulsion Systems

Electric rocket propulsion– types of electric propulsion techniques – Ion propulsion – Nuclear rocket – comparison of performance of these propulsion systems with chemical rocket propulsion systems – future applications of electric propulsion systems – Solar sail – current scenario of advanced propulsion projects worldwide

Course Outcomes: At the end of the course, the student will be able to

CO1: Analyse the ramjet and hypersonic air breathing propulsion systems. ``

CO2: To evaluate the rocket propulsion systems

CO3: Create the applications of solid propulsion systems

CO4: Evaluate the applications and principles of liquid and Hybrid propulsion systems

CO5: To import knowledge about the advanced propulsion technique used for interplanetary mission.

CO's PO's & PSO's MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	3	2	2	3	-	-	-	-	1	-	1	-	3	3
CO2	3	2	2	2	1	-	-	-	-	1	-	1	-	3	2
CO3	2	3	2	3	2	1	1	-	-	-	1	2	2	2	1
CO4	2	2	2	3	2	1	1		-	-	1	2	2	1	1
CO5	3	2	3	3	3	1	-1		1	1	2	2	2	2	2

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Mathur, M.L., and Sharma, R.P., "Gas Turbine, Jet and Rocket Propulsion", Standard Publishers and Distributors, Delhi, 2nd edition 2014.

2. Sutton, G.P., "Rocket Propulsion Elements", John Wiley & Sons Inc., New York, 9th Edition, 2017

REFERENCE BOOKS:

1. Hill, P.G. & Peterson, C.R. "Mechanics & Thermodynamics of Propulsion" Second Edition Dorling Kindersley India 2009.

2. Robert G. Jahn, "Physics of Electric Propulsion Dover publications" Second Edition 2012.

WEB RESOURCE:

Department of Aeronautical Engineering BoS Chairman/Faculty of Mechanical Engineering

Total: 45 periods

1. https://onlinecourses.nptel.ac.in/noc22_ae03/preview AE650208 AIRCRAFT STRUCTURES - II L Т Р С **Course Type: Theory Course Category: Professional Core** with project 3 0 0 3 **COURSE OBJECTIVES:** To gain knowledge of unsymmetrical bending. • •. To impart knowledge of shear flow in open sections in aircraft. To impart knowledge of shear flow in closed sections in aircraft. To impart knowledge of buckling behavior of aircraft thin plates. To analyze the stress induced in aircraft wings and fuselage. UNIT I UNSYMMETRICAL BENDING 9 Bending of symmetric beams subject to skew loads - bending stresses in beams of unsymmetrical sections – generalized k-method, neutral axis method, principal axis method, Advantages and Disadvantages of three methods. **UNIT II SHEAR FLOW IN OPEN SECTIONS** 9 Thin-walled beams - concept of shear flow - the shear centre and its determination - shear flow distribution in symmetrical and unsymmetrical thin-walled sections – structural idealization – shear flow variation in idealized sections-Applications of shear flow calculations. UNIT III SHEAR FLOW IN CLOSED SECTIONS Q Bredt - Batho theory - single-cell and multi-cell tubes subject to torsion - shear flow distribution in thin-walled single & multi-cell structures subject to combined bending and torsion – with walls effective and ineffective in bending-Importance of shear flow & shear center determination. UNIT IV BUCKLING OF PLATES 9 Governing differential equation - Buckling of thin plates - local buckling stress of thin-walled sections - crippling strength estimation- thin skin stringer panel-effective skin width -inter rivet buckling-skin stringer panel-Integrally stiffened panels-cutouts- Lightly loaded beams. UNIT V STRESS ANALYSIS OF WING AND FUSELAGE 9 Aircraft loads and its classification- Analysis the stress in wings and fuselage frames - shear force and bending moment distribution over the aircraft wing and fuselage – shear flow in thin-webbed beams with parallel and non-parallel flanges – complete tension field beam. **TOTAL: 45 PERIODS**

COURSE OUTCOMES:

At the end of this course the students will be able to:

CO1: Evaluate about unsymmetrical bending an aircraft.

CO2: Analyze the shear flow in open section of aircraft structure.

CO3: Analyze the shear flow in closed section of aircraft structure.

CO4: Analyze about buckling of air craft thin plates.

CO5: Analyze the aircraft real structural components such as wings and fuselage.

TEXT BOOKS:

1. Megson, T.M.G., "Aircraft Structures for Engineering Students", Fifth Edition Elsevier Aerospace Engineering series, 2021.

2.Peery, D.J., and Azar, J.J., "Aircraft Structures", Second Edition, McGraw-Hill, 2015.

REFERENCE BOOKS:

1.Bruhn. E.H. "Analysis and Design of Flight vehicles Structures", Fourth edition Tri - state off set company, USA, 2008.

2.Rivello, R.M., "Theory and Analysis of Flight Structures", Third edition McGraw HI 2009.

3. Howard D Curtis, "Fundamentals of Aircraft Structural Analysis", Second edition WCB-

McGraw Hill, 2005.

WEB RESOURCE:

1. https://archive.nptel.ac.in/courses/112/101/112101095/

CO-PO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2					2			2

CO2	3	2	2	3	3		2		2
CO3	3	2	3	3	3		2		2
CO4	3	3	2	3	3		2		2
CO5	3	3	3	3	3		3		2

AE650209 - A	ERODYNAMICS II					
Course Cotogony Professional Cons	Course True Theory	L	Т	Р	С	1
Course Category: Professional Core	Course Type: Theory	2	1	0	3	
COURSE OBJECTIVES:						
• To import knowledge about the concepts	of compressibility,					

- To analyze the theory behind the formation of shocks and expansion fans in Supersonic flows.
- To evaluate the methodology of measurements in Supersonic flows.
- To analyses the differential equations of motion for steady compressible flows.
- To evaluate the transonic flow overwing.

UNIT I COMPRESSIBLEFLOW- FUNDAMENTALS

Energy and momentum equations for compressible fluid flows, various regions of flows, reference velocities, stagnation state, velocity of sound, critical states, Mach number, critical Mach number, types of waves, Mach cone, Mach angle, effect of Mach number on compressibility

UNIT II NORMAL ANDOBLIQUE SHOCKS

Governing equations, variation of flow parameters like static pressure, static temperature, density, stagnation pressure and entropy across the normal shock, Prandtl-Meyer equation, impossibility of Shock in subsonic flows, flow in convergent and divergent nozzle with shock, normal shock in Fanno and Rayleigh flows, flow with oblique shock (elementary treatment only

UNIT III WIND TUNNEL

Types of wind tunnels - sub sonic wind tunnel, supersonic wind tunnel, projectile obstruction and shadow graph technique characteristics of swept wings, effects of thickness, camber and aspect ratio of wings, transonic are a rule.

UNIT IV JET PROPULSION

Aircraft propulsion-types of jet engines-energy flow through jet engines, study of turbojet engine components – diffuser, compressor, combustion chamber, turbine and exhaust systems, performance of turbo jet engines- thrust, thrust power, propulsive and overall efficiencies, thrust augmentation in turbo jet engine, ram jet and pulse jet engines

9

9

9

9

UNIT V SPACE PROPULSION

Characterization of Space Propulsion Devices - Rocket propulsion-rocket engines thrust equation - effective jet velocity specific impulse- rocket engine performance, solid and liquid propellants, comparison of different propulsion systems.

TOTAL: 45 PERIODS

COURSE OUTCOMES: At the end of this course the students will be able to:

CO1: Calculate the compressible flow through a duct of varying cross section.

CO2: Use quasi one-dimensional theory to analyze compressible flow problems.

CO3: Estimate fluid properties in Rayleigh and Fanno type flows.

CO4: Estimate the properties across normal and oblique shockwaves.

CO5: Predict the properties of transonic flows.

TEXT BOOKS:

1. Anderson J.D "Modern compressible flows: with Historical perspective", McGraw-Hill 5th Edition 2011.

2. L.J. Clancy, "Aerodynamics" Sterling Book House, 2011.

REFERENCE BOOKS:

1. Rathakrishnan, E., "Gas Dynamics", 7th Edition, Prentice Hall of India, 2021.

2. Shapiro, A.H., "Dynamics and Thermodynamics of Compressible Fluid Flow Wiley, First edition 2017.

WEB RESOURCE:

1. https://archive.nptel.ac.in/courses/101/106/101106042/

CO-PO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	2					3			3
CO2	2	3	3	3	3				2			2
CO3	2	3	2	3					2			2
CO4	2	3	2	3					2			2

|--|

AE650.	304 AIRCRAFT STRUCTURES LAB				
Course Category: Program	Course Type: Practical	L	Т	P	С
Core	Course Type. Tractical	0	0	3	1.5
COURSE OBJECTIVES:					
To study experimentally the load de	flection characteristics structural material	s under	differe	ent type	es of
loads.					
LIST OF EXPERIMENTS					
					1
1.Determination of Young's modul	us, yield stress, ultimate tensile strength.				
2. Stress and breaking strength of s	teel using mechanical extensometers.				
3.Determination of Young's modul	us of aluminum using mechanical extense	ometers	5.		
4 Deflection of herein with an in	d d'(('				
4. Deflection of beams with variou	s end conditions.				
5 Determination of Buckling load	in Column				
5. Determination of Duckning foud					
6. Unsymmetrical bending of Z-sec	ction beams.				
7. Shear Centre location for open c	hannel sections.				
8. Shear Centre location for closed	D-sections.				
9. Determination of Constant stren	gth of the beam.				
10 Determination of natural frague	ancies of contilever beams				
	neres of cantilever beams.				
•					DIODC
		ТС)TAL:	45 PE	RIODS

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1: Practical behaviour of aircraft structural Components Under different loading conditions.

CO2: Student will have hands-on experience in the area of testing of structural components.

CO3: Student will able to demonstrate the basics experimental techniques in photo elasticity.

CO4: Student will have an exposure to data interpretation/analysis of vibration measuring Instruments.

CO5: Student will have practical knowledge in the field of fabrication and testing of Composite material specimen.

CO'S PO'S&PSO'S MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3		3				2		3	
CO2	3	3	3		3		3		2		2	
CO3	3	2	2		3				2		2	
CO4	3	2	2		3				2		3	
CO5	3	3	3		3		3		2		2	
			1-	low, 2	- med	ium, 3	- high,	'-' no	correla	ation		

	AE650305- SURFACE AND SOLID MODELLING OF AIRCRAFT COMPONENTS LAB														
Co	urse Ca	ategory	y: Prof	ession	al (Course	Type:	Practi	ical			L	T	P	<u>C</u>
	re	ODIE	стил	76.			vı					0	0	3	1.5
	•	To int model	roduce ling pa	the co ckage.	oncept o	of desig	gn and	draftin	g of ar	aircra	ft structu	ural co	ompor	nent usi	ng cad
LIS	ST OF	EXPEI	RIMEN	NTS											
1	Executi	ion of t	wo din	nension	al (2D)) drawi	nos usi	ng cad	modeli	ng soft	ware				
2.1	Executi	on of i	sometr	ic draw	vings us	sing ca	d mode	ling so	ftware.		ware.				
3.]	Executi	on of t	hree di	mensio	onal (3I	D) draw	vings us	sing ca	d mode	ling so	ftware.				
4.]	Design	and mo	odeling	aircra	ft wing	of a N	ACA s	eries us	sing cao	d mode	ling soft	ware.			
5.]	Design	and mo	odeling	aircra	ft wing	ribs ar	nd spars	s using	cad mo	odeling	software	e.			
6.]	Design	and mo	odeling	of roc	ket noz	zle usi	ng cad	modeli	ng soft	ware.					
7.]	Modeli	ng the	aircraft	wing	with ble	ended v	winglet	•							
8.	Assemt	ole the	compo	nents o	f landi	ng gear	and de	etailing	the par	rts.					
9.5	Study o	of CAD	data e	xchang	e stand	ards in	the mo	odeling	indust	ry.					
10	Study.	of Aug	gmente	d realit	y and 3	D Prin	ting rol	le in C	AD ind	ustry.					
												ТО	TAL:	45 PEF	LIODS
CO	URSE	OUTC	COME	S: At th	ne end o	of the co	ourse, t	he stud	ent will	be able	e to				
CO CO	<u>1: To a</u> 2: To c	nalyse reate th	basic a ne solid	ircraft and sh	and its neet me	compo tal thre	onents. ee dime	nsiona	l drawi	ngs.					
CC	03: To e	evaluat	e the as	ssembl	y of air	craft co	ompone	ents.		0					
CO	4: To a	nalyse	the star	ndard f	ormats	for exe	changir	ng CAI	D data b	between	differer	nt cad	mode	lling	
pac CO	kages. 5. To e	valuate	recent	techno	ologies	impler	nented	in airc	raft des	ion					
CO	'S PO'	S&PS	0'S M.		IG	Impier	nentea	in une		1511.					
			PO2	PO3		PO5	PO6		PO8	POQ	PO10	PO	11	PO12	
	CO1	2	2	2	104	2	100	107	100	2	1010	10	11	1012	
		3	2	3		3				2		3)		
	CO2	3	3	3		3		3		2		2	2		
	CO3	3	2	2		3				2		2	2		
	CO4	3	2	2		3				2		3			
	CO5	3	3	3		3		3		2		2	2		
				1-	low, 2	- med	ium, 3	- high,	'-' no	correl	ation	-	•		

AE650503 - INTEGRAT	ED APTITUDE SKIL	LS - I	HIGH	ER)		
	Course Type: Skill	L	Т	Р	С]
Course Category: EEC	Based Course	0	0	2	1*	-
COURSE OBJECTIVES:						<u></u>
To impart knowledge on the following Topic	·s,					
• Solve aptitude, logical and questions.						
• Excel the talents of students in logical V	Verbal reasoning Analy	sis				
• The non-verbal Reasoning Analysis						
• enable the students to speak and write in	n English without maki	ing any	mistake	S		
• Excel the students in mock interview, g	roup discussion.					
UNIT 1: QUANTITATIVE APTITUDE						6
Percentage - Ratio & Proportions - Pipes &	z Cisterns - Permutat	ions &	Combi	nations	- Partne	ership -
Allegation (Or) Mixture - Races & Games -	Stocks & Shares - H	Ieight &	& Dista	nce - T	True Disc	ount &
Banker's Discount - Probability - Mensuration	n (Area, Volume & Su	rface A	rea) - I	nterest	(Simple]	Interest,
Compound Interest) - Logarithm - Chain Rule	- Data Interpretation (Tabula	tion, Ba	r Chart	, Pie Cha	rt, Line
Graphs)	-					
· · ·						
UNIT 2: LOGICAL REASONING-VERBA	L REASONING					6
Logic - Statement - Argument, Assumptions,	Courses of action, Co	onclusio	on - De	riving	Conclusio	on from
passages - Theme Detection - Cause and Effect	reasoning					
UNIT 3: LOGICAL REASONING- NONVE	CRBAL REASONING	:				6
Series - Analogy - Classification - Analytical	Reasoning - Mirror Im	ages - V	Vater In	nages -	Spotting	out the
embedded figures - Completion of incomplete	e patterns - Figure Ma	trix - P	aper Fo	olding -	Paper C	utting -
Rule Detection - Grouping of identical figures	s - Cubes and Dice - I	Dot Situ	ation -	Constru	ction of	squares
and triangles - Figure formation and analysis						-
UNIT 4: VERBAL ABILITY						6
Concord - Cloze Passage - Analogies or Re	everse Analogies - Ju	mbled 3	Sentenc	es - Er	ror Dedu	uction -
Reading Comprehension - Paragraph Formatio	n - Completing Stateme	ents - U	sage of	Preposi	itions - In	oference
- Verification of Truth from the Statements - C	hange of Speech					
UNIT V: PRACTICALS						6
Extempore speech, Group Discussion, Mock Ir	terview					
			,	TOTA	L: 30 PE	RIODS
COUDSE OUTCOMES. At the and of the app	urge the student will be	a obla to				

CO1	Evaluate the basic concepts of quantitative ability.
CO2	Evaluate the basic concepts of verbal logical reasoning Skills.
CO3	Acquire satisfactory competency in use of nonverbal reasoning.
CO4	Analyse the concepts in verbal ability
CO5	Acquire satisfactory competency in Group Discussion and Mock Interview

CO-PO MAPPING

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	1	2	2	2	2	2	3	2	2	2	-	-
CO2	3	3	2	3	3	2	2	2	2	3	1	2	-	-
CO3	2	3	2	3	2	2	2	2	3	2	2	1	-	-
CO4	2	3	2	2	2	2	3	3	2	2	1	2	-	-
CO5	2	3	3	3	2	3	3	3	2	2	2	3	-	-

1- Low, 2 - Medium, 3 - High, '-' No Correlation

TEXT BOOKS:

1. Legal Aptitude & Reasoning for CLAT & AILET Exams. N.p., Disha Publications, 2021.

2. Agarwal R.S, "Quantitative Aptitude," S.Chand and Company Pvt. Ltd., New Delhi, First Edition 1989, Reprint, 2016

REFERENCE BOOKS:

1. Jaikishan, and Premkishan. How to Crack Test of Reasoning. India, Arihant Publication India Limited, 2018.

2. Anand P A, "Quantitative Aptitude," Wiley India Pvt. Ltd., New Delhi, Edition, 2016.

WEB RESOURCES:

Aptitude Skills

1. https://www.udemy.com/course/quant_aptitud_tricks_and_shortcuts Reasoning

2. https://aptitudeclass.com/

AE6508	01 - AIRCRAFT REGULATIO	N			
Course Category: Programme Mandatory	Course Type: Theory	L 2*	T 0	P 0	C 0
COURSE OBJECTIVES:					

• To provide a comprehensive understanding of aircraft regulation and certification processes.

• To impart knowledge to the students with the legal and safety requirements governing aircraft design, manufacturing, operation, and maintenance.

• To explore international and national regulatory bodies and their roles in ensuring aviation safety and compliance.

• To analyze case studies and real-world scenarios to apply regulatory concepts in practical contexts.

• To equip students with the knowledge and skills necessary to navigate the complex regulatory landscape in the aerospace industry.

UNIT I INTRODUCTION TO AIRCRAFT REGULATION AND CERTIFICATION

Overview of aviation regulatory bodies (FAA, EASA, ICAO, etc.) - History and evolution of aircraft regulation - Airworthiness standards and certification requirements - Regulatory compliance and enforcement mechanisms - Aircraft registration and marking requirements - Maintenance and inspection procedures for regulatory compliance - Airworthiness Directives (ADs) and their importance -Role of human factors in regulatory compliance.

UNIT II INTERNATIONAL AGREEMENTS AND ORGANIZATIONS

The Convention of Chicago and its implications - International Civil Aviation Organization (ICAO): objectives, composition, and functions -Other international agreements (Tokyo Convention, Montreal Convention, etc.) - Indian regulatory framework: DGCA, Aircraft Act 1934, Indian Aircraft Rul ²³ - Harmonization efforts and challenges in international aviation regulations - Cross-border operations and regulatory considerations - Environmental regulations and their impact on international aviation - Emerging trends in global aviation regulation and policy-making

UNIT III AIR NAVIGATION AND LEGAL ASPECTS

Principles of air navigation and sovereignty - Flight over territory: rights, regulations, and documents - International standards and recommended practices (SARPs) - Civil Aviation Requirements (CARs) and Warsaw Convention - Air traffic management and airspace classification - Aircraft accident investigation procedures and legal aspects - Liability issues in air navigation and aviation law - Legal considerations in unmanned aerial systems (UAS) operations

UNIT IV PILOT-IN-COMMAND (PIC) AUTHORITY AND OPERATOR'S LIABILITIES

6

6

6

6

PIC authority and responsibility for safety and security - Liability of operators and pilots towards persons and goods on the ground - Commercial practices and associated rules in aviation - Crew training and competency requirements - Licensing and certification procedures for pilots and operators - Insurance requirements for aviation operations - Contractual agreements and their legal implications in aviation

UNIT V CASE STUDIES AND PRACTICAL APPLICATIONS

Analysis of international agreements in real-world scenarios - Examination of legal aspects and liabilities in aircraft operations - Group discussions and presentations on commercial practices and regulations -Simulation exercises on regulatory compliance scenarios - Research projects on emerging regulatory issues in aviation - Presentation of case studies on aviation accidents/incidents and regulatory responses -Guest lectures from industry experts on current regulatory challenges and solutions.

TOTAL: 30PERIODS

6

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1: Demonstrate a comprehensive knowledge about the aircraft regulation and certification processes, including international and national regulatory frameworks.

CO2: Analyze and interpret key international agreements and organizations governing aviation, such as the Convention of Chicago and the International Civil Aviation Organization (ICAO).

CO3: Apply knowledge of air navigation principles and legal aspects to ensure compliance with airworthiness standards, recommended practices, and civil aviation requirements.

CO4: Assess the authority and responsibilities of the Pilot-in-Command (PIC) and operators concerning safety, security, and liability in aircraft operations.

CO5: Evaluate commercial practices and associated rules in aviation, including contractual agreements, insurance requirements, and licensing procedures.

CO'S	PO'S	S&PS	0'S N	IAPP	ING										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	-	-	2	-	-	-	2	-	2	2	2	2
CO2	2	3	2	-	-	2	-	-	-	2	-	2	2	2	
CO3	2	2	2	-	-	2	-	-	-	2	-	2	2	2	2
CO4	2	2	2	-	-	2	-	-	-	2	-	2	2		2
CO5	2	2	2	-	-	2	-	-	-	2	-	2	2	2	2
			1-	low, 2	2 - me	dium	, 3 - h	igh, '	-' no	correl	ation				

TEXT BOOKS:

1.Scott Hamilton, "Understanding Aviation Regulation", Routledge, 2018.

2.Regulatory texts and guidelines provided by relevant aviation authorities, 2021

REFERENCE BOOKS:

2.Sarah E. MacLeod, "Understanding Aircraft Certification", ASA, 2013.

3. Allan Seabridge, "Aviation Regulation in the EU", Routledge, 2017.

SEMESTER - 6

AE660210– AIRCRAFT	STRUCTURES AND REP	PAIR			
	Course Type: Theory	L	Т	P	C
Course Category: Programme Core	with Practical Component	2	0	2	3
COURSE OBJECTIVES:					
 To impart knowledge about aircraft struct To impart knowledge about the safety pre To evaluate the troubleshooting procedure To analyze the basic welding concepts in a To analyze on the applications of MEMS 	ure maintenance and repair cautions and procedure of air structural components to various disciplines	craft str	ucture		
UNIT 1: WELDING IN AIRCRAFT STRUCT	URAL COMPONENTS				6
Equipments used in welding shop and their maint	enance - Ensuring quality we	elds - Sh	eet me	tal repa	air and
maintenance: Selection of materials - Repair sche	mes; Fabrication of replacem	ent pate	hes; T	ools -	
power/hand; Repair techniques; Close tolerance f	asteners; Sealing compounds	; formin	g/shap	ing.	
UNIT 2: PLASTICS AND COMPOSITES IN A	AIRCRAFT				6
Types of plastics used in aircraft - Maintenance a	and repair of plastic compone	ents - Re	epair of	f crack	s, holes
etc., and various repairs schemes - Scopes. lean	ing of fibre reinforced plastic	c (FRP)	mater	ials; V	acuum-
bag process. Special precautions – Autoclaves					
UNIT 3: AIRCRAFT JACKING, ASSEMBLY	Y AND RIGGING				6
Aircraft jacking and weighing and C.G. Location	. Balancing of control surface	es - Insp	ection	mainte	nance.
Helicopter flight controls. Tracking and balancin	g of main rotor. Aircraft Elec	ctrical S	ystem,	Inspec	ction of
Aircraft and Basic Aircraft Design.					
UNIT 4: HYDRAULIC AND REPAIR IN AIR	CRAFT				6
Trouble shooting and maintenance practices - I	Installation and maintenance	of Inst	rumen	ts -har	ıdling -
Testing - Inspection. Inspection and maintenan	ce of auxiliary systems - Fi	ire prote	ection	system	ıs - Ice
protection system - Rain removal system -Positio	n and warning system – Auxi	iliary Po	wer U	nits (A	PUs)
UNIT 5: SAFETY PRACTICES IN AIRCRAF	T				6
Aircraft safety systems - Air traffic safety system	n - Airport safety - Aviation	safety n	nanage	ment s	ystem -
Hazardous materials storage and handling - Airc	craft furnishing practices - Tr	rouble s	hooting	g. The	ory and
practices.					
		TO	TAL:	30 PE	RIODS
PRACTICAL COMPONENT					
1. Welding of aircraft structural component.					
2. Break test - Repair Schemes; FRP/honeycomb	sandwich materials.				
3. Aircraft jacking and weighing and C.G. Location	on.				

4. Inspection and maintenance of air-conditioning and pressurization system, water and waste system.

5. Hazardous materials storage and handling

TOTAL: 15 PERIODS

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1: Analyse the welding, brazing process with the requirements of the process and significance of NDT

CO2: Evaluate the various maintenance practices in plastic and composite parts of aircraft

CO3: Comprehend the precautionary steps involved in rigging, Jacking process

CO4: Analyse the working methodology of basic aircraft systems

CO5: Evaluate about safety practices and troubleshooting on an aircraft

CO'S PO'S&PSO'S MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	-	-	-	-	-	-	-	-	-	-	-	1	-	3
CO2	2	1	1	2	1	-	-	-	-	-	1	-	-	-	1
CO3	-	1	1	1	2	-	-	-	-	-	1	1	1	-	-
CO4	1	1	2	1	2	-	-	-	-	-	1	1	-	-	1
CO5	-	2	1	1	2	2	1	-	-	-	1	-	1	-	-

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Kroes, Watkins, Delp, "Aircraft Maintenance and Repair ", McGraw Hill, New York, 7th edition, 2021.

2. Ronald Sterkenburg, 'Aircraft Maintenance & Repair, 8th Edition", McGraw Hill, 9th edition, 2023.

REFERENCE BOOKS:

1. Larry Reithmeir, "Aircraft Repair Manual ", Palamar Books, Marquette, 8th edition, 2013.

2. Clarence C. Rodrigues, and Stephen K. Cusick, Commercial Aviation Safety, 5th Edition, McGraw-Hill Education, 5th edition, 2012.

3. Tai Ran Hsu, "Aircraft Structures for Engineering Students" Elsevier, New Delhi, 6th edition, 2022.

WEB RESOURCE:

1. Aircraft Structures and Repair: https://nptel.ac.in/courses/101105084

AE660211 -	- FLIGHT DYNAMICS					
Course Category: Programme Core	Course Type: Theory	L	Т	Р	C	
	with Project	3	0	0	3	
 To impart knowledge about the performance To analyze the static and dynamic response flight conditions. Evaluate the dynamic longitudinal stability directional dynamic stability. 	ce of airplanes under various on the second	operating ntary an and stal	g condi d invo bility ci	tions. luntary riterion,	change , lateral	s in and
Degree of freedom of rigid bodies in space - Sta	atic and dynamic stability - 1	Purpose	n of con	trols in	airplar	ies -
Inherently stable and marginal stable airplanes	– Static, Longitudinal stabili	tv - Sti	ck fixe	d stabi	litv - B	asic
equilibrium equation - Stability criterion - Effects	of fuselage and nacelle - Influ	uence of	CG lo	cation -	Stick f	ixed
neutral point and static margin						
UNIT 2: STATIC LONGITUDINAL STABILI	TV AND CONTROL (STICK	FREE)		0)
Stick free stability-Hinge moment coefficient -	Stick free neutral points-Syr	nmetric	maneu	vers -	Stick f	orce
gradients - Stick force per 'g' - Power effects -	Aerodynamic balancing. De	terminat	ion of	neutral	points	and
maneuver points from flight test.						
UNIT 3: MANEUVERING FLIGHT AND DIR	ECTIONAL STABILITY				9)
Effect of acceleration on airplane balancing, Ele	wator angle per g, Asymmetry	ric fligh	t, Weat	ther coo	ck stabi	lity,
contribution of different parts of Airplane, Rudder	r Fixed and Rudder free static	directio	onal sta	bility. F	Peddle f	ixed
and peddle stability, roll control reversal.						
UNIT 4: LATERAL STABILITY AND CONTR	ROL		D 11 /	1 .1.	9)
Dinedral effect - Lateral control - Coupling betw	veen rolling and yawing mon	nents - I	KOII Sta	ibility a	and con	trol,
Adverse yaw effects - Aileron reversal - Stat	tic directional stability - W	eather	cocking	g effect	t - Ru	dder
requirements - One engine inoperative condition -	Rudder lock.					
UNIT 5: DYNAMIC STABILITY Dynamic longitudinal stability: Equations of motiv	on - Stability derivatives - Mo	des and	stabili	veriter	9 100 - Fi) ffect
of freeing-the stick Dynamic stability - Spiral	divergence Dutch roll auto	rotation	n snin	approv	vimatio	n of
longitudinal and lateral modes. Eactors affecting the	ime period and damping	10101101	i, spin,	upp102	Amatio	1 01
Tongradmar and fateral modes, ractors arecting the	inte period and damping.		тот	'AT • 45	PEDIO	פתר
COURSE OUTCOMES: At the end of the course,	, the student will be able to		101	AL. 4 3		506
CO1: Evaluate the performance in level flight, mi	nimum drag and power requi	red, clin	nbing, g	gliding	and tur	ning
flight, v-n diagram and load factor.						
CO2: Knowledge about degrees of stability, stick	fixed and stick free stability,	stability	criteria	, effect	of fuse	lage
and CG location, stick forces, aerodynamic bala	nncing.					
CO3: Analyse the lateral control, rolling and ya	wing moments, static directi	onal sta	bility,	rudder	and ail	eron
control requirements and rudder lock.						
CO4: Evaluate the dynamic longitudinal stability	, stability derivatives, modes	and stat	oility ci	iterion,	lateral	and

directional dynamic stability.

CO5: Interpret the Dynamic Stability, Equation of Motion & understand the static and dynamic response of aircraft for both voluntary and involuntary changes in flight conditions.

CO'S PO'S&PSO'S MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	-	-	-	-	2	1	-	2	-	3	3
CO2	3	2	2	3	-	_	_	-	2	1	-	2	-	3	2
CO3	3	3	2	3	-	_	_	-	2	-	1	2	2	2	1
CO4	3	3	3	3	-	-	-	-	2	-	1	2	2	1	1
CO5	3	3	3	3	-	-	-	-	2	1	2	2	2	2	2

1- low, **2** - medium, **3** - high, '-' no correlation TEXT BOOKS:

1. Perkins, C.D., and Hage, R.E., Airplane Performance stability and Control, wiley india Pvt Ltd, 3rd edition, 2020.

2. Nelson, R.C. Flight Stability and Automatic Control, second edition McGraw-Hill Book Co.,3rd edition, 2023.

REFERENCE BOOKS:

1. Etkin, B., Dynamics of Flight Stability and Control, Third edition, Wiley India Pvt ltd, 4th edition 2018.

2. Babister, A.W., Aircraft Dynamic Stability and Response, Pergamon Press, 7th edition 2013.

3. Yechout, T. R. et al., Introduction to Aircraft Flight Mechanics , AIAA education, 2nd edition, 2017.

WEB RESOURCE:

1. https://nptel.ac.in/courses/101106043

AE660212 - FINIT	E ELEMENT ANALYSIS				
Course Category: Programme Core	Course Type: Theory	L	Τ	Р	С
COUPSE OBJECTIVES:		2	1	0	3
• To understand the basic concents in finite	element analysis				
• To understand the basic concepts in finite	element analysis.	4 1			1 :4
• To impart knowledge about formulation a	nd the procedure of the finit	te eleme	ent metr	iod and	l its ap-
plication to varieties of problems.					
• To analyse about continuum elements					
• To illustrate about iso parametric element.					
• To evaluate heat transfer problems using f	ïnite element analysis				
UNIT I BASIC CONCEPTS					9
Various approximate methods – variation approac	ch and weighted residual app	proach a	pplicati	on to	,
structural mechanics problems - finite difference	methods- governing equatio	n and co	onverge	nce crit	teria of
finite element method.			-		
UNIT II DISCRETE ELEMENTS					9
Bar elements, uniform section, mechanical and th	ermal loading, varying secti	on, 2D	and 3D	truss e	lement.
Degrees of freedom, Beam element - problems for	or various loadings and bour	ndary co	nditions	s - 2D	and 3D
Frame elements - Use of local and natural coordir	nates.				
UNIT III CONTINUUM ELEMENTS					9
Basics on plane stress and plane strain condition	n, Constant and linear strai	n triang	ular ele	ements	and its
shape function derivation, stress strain relations	hip for plane stress and pl	lane stra	ain prol	olems a	and axi
symmetric element. Plane stress, plane strain and	axi-symmetric problems.				
UNIT IV ISOPARAMETRIC ELEMENTS					9
Definitions, Shape function for 4, 8 and 9 noda	ll quadrilateral elements, st	iffness	matrix a	and con	nsistent
load vector, evaluation of element matrices using	numerical integration.				
UNIT V HEAT TRANSFER PROBLEMS					9
Heat transfer problems, One dimensional conduct	ion Quadratic element, One	dimens	ional co	onductio	on with
convection, Heat transfer in two dimensions, st	eady state fin problems, T	ime dej	pendent	Heat t	transfer
problems,					
		Τ	OTAL:	45 PEI	RIODS
COURSE OUTCOMES: At the end of the course	e, the student will be able to				
CO1: Evaluate the finite element steps and unders	stand the convergence of the	proble	m		
CO2: Analyse the stiffness matrix for bar, beam a	nd frame problems using su	itable b	oundary	condit	tion.
CO3: Interpret the plane stress and plane strain co	ondition are used to understa	and 2d s	tructure	s	
CO4: Analyse the 2d and 3d structures using isop	arametric elements				

CO5: Analyse the fluid flow and heat transfer problems

CO'S PO'S&PSO'S MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3				2			3
CO2	3	3	3	3					2			2
CO3	3	2	2	2					2			2
CO4	3	3	3	3	3				2			2
CO5	3	3	3	3	3				2			2

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. David Hutton, "Fundamentals of Finite Element Analysis" Tata McGraw-Hill Publication, New Delhi, 2nd edition 2005.

2. S.S.Rao - Finite Element Methods in Engineering (Butterworth & Heinemann, UK), 6th edition, 2022.

REFERENCE BOOKS:

1. C.S. Krishnamurthy - Finite Element Analysis (Tata McGraw Hill, Delhi, India) 2nd edition, 2017.

2. T.R. Chandrapatha & A.D. Belegundu – Introduction to Finite Elements in Engineering (Printice Hall of India, New Delhi, India), 4th edition, 2017.

3. J.N. Reddy - An Introduction to Finite Element Method (Mc Graw Hill, USA), 5th edition,2019.

WEB RESOURCE:

1. https://archive.nptel.ac.in/courses/112/104/112104193/

AE6603	06 - AIRCRAFT DESIGN PROJECT –	I			
Course Category: Programme	Course Type: Practical	L	Τ	P	С
Core		0	0	3	1.5
COURSE OBJECTIVES:					
• To demonstrate the data	collections of different airplanes.				
• To analyse the experience	e in weight estimations.				
• To impart knowledge ab	out geometric parameters of airplanes.				
• To evaluate the performa	nce characteristics of airplanes.				
• To investigate the stabili	ty of the system when subjected to disturb	ance.			
LIST OF EXPERIMENTS					
1. Comparative configuration stud	y of different types of aircraft.				
2. Comparative study on specificat	ion and performance details of aircraft.				-
3. Preparation of comparative data	sheets.				-
4. Work sheet layout procedures.					-
5. Comparative graphs preparation	and selection of main parameters for the	design.			-
6. Preliminary weight estimations,	selection of main parameters				-
7. Power plant selection, Aerofoil	selection, Wing tail and control surfaces.				-
8. Preparation of layouts of balance	e diagram and three view drawings.				-
9. Drag estimation in the aircraft.					-
10. Detailed performance calculati	ons and stability estimates.				-
		TO	ГAL: 4	5 PER	lods
COURSE OUTCOMES: Upon co	mpletion of the course, Students will be al	ole to			
CO1: Create preliminary design of specifications.	an aircraft starting from data collection to	satisfy n	nission		
CO2: Evaluate the estimation of ge	ometric and design parameters of an airpla	ane.			
CO2. Create the researching in-	d in maight actimation more algorithms	. 1	+ · · · - +	ion of	41

CO3: Create the procedure involved in weight estimation, power plant selection, and estimation of the performance parameters.

CO4: Create the design of a system, component, or process to meet requirements for aircraft systems.

CO5: Interpret the integration of engineering practices in such subjects as aerodynamics, structures, propulsion, and flight mechanics.

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		3	3	3	3				2			2
CO2		3	3	2	2				2			2
CO3		3	3	2	2		3		2			2
CO4		2	3	3					2			2
CO5		3	2	2			3		2			2
			1- l	ow, 2 -	mediu	ım, 3 -	high, '	-' no c	orrelat	ion		

AE660307 - SIMULATION OF AIRCRAFT STRUCTURAL COMPONENTSCourse Category: Program
CoreLTPC0031.5COURSE OBJECTIVES:

• To develop skills in computational fluid dynamics to address engineering problems.

• To analyse the basic structure and capabilities of current commercial CFD codes.

• To evaluate the finite element analysis and finite element methods.

• Impart knowledge about ANSYS Workbench FEA numerical engineering problem solver.

• Analyse the aircraft nozzle and diffuser using ANSYS software.

LIST OF EXPERIMENTS

1.	Study	of	basics	in	ANSYS.
----	-------	----	--------	----	--------

2. Stress analysis of a plate with a circular hole

3. Stress analysis of rectangular L bracket

4. Stress analysis of cantilever beam

5. Introduction to ANSYS fluent

6. Subsonic flow in convergent and divergent nozzle

7. Pressure distribution over a symmetric aero foil

8. Flow through a diffuser

9. Shock waves boundary layer intersection over a flat plate

10. Circulation of the lift over a circular cylinder

TOTAL: 45 PERIODS

COURSE OUTCOMES: Upon completion of the course, Students will be able to

1. Analyse the aircraft components using finite element analysis and finite element methods.

2. Analyse the ANSYS Workbench FEA numerical engineering problem solver.

3. Create ANSYS Workbench FEA numerical engineering problem solver

4. Interpret the Finite Difference and Finite Volume methods in CFD modelling

5. Evaluate the aircraft nozzle and diffuser performance using ANSYS software.

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		3	3	3	3				2			2
CO2		3	3	2	2				2			2
CO3		3	3	2	2		3		2			2
CO4		2	3	3					2			2
CO5		3	2	2			3		2			2

ME660504 - TRAINING IN CENTRE FOR EXCELLENCE IN ROBOTICS, SENSOR AND PLC (Common to MECH, MAE& AERO)												
Course Category: EEC	Cou	rse Ty	pe: Ski	ill base	d	L	Т	P	С			
	cour	se				0	0	2	1*			
• To evaluate the basic fundamental	s of M	[echatr	onics									
To enough an exemption of fundamental			omes.									
• To provide an overview of fundam	ientais 	s of aut		m.								
• To evaluate the application in eng	ineerin	ig mec	hanism	IS.								
ROBOTICS10Basic Concepts: Definition and origin of robotics, different types of robotics, various generations of robots,												
Basic Concepts: Definition and origin of robotics, different types of robotics, various generations of robots, degrees of freedom. Asimov's laws of robotics, dynamic stabilization of robots. Manipulators, Astronomy												
degrees of freedom, Asimov's laws of robotics, dynamic stabilization of robots. Manipulators, Actuators												
and Grippers: Construction of manipulators, manipulator dynamics and force control, electronic and												
pneumatic manipulator control circuits, end effectors, U various types of grippers, design considerations.												
SENSORS FUNDAMENTALS AND ITS APPLICATIONS 10 Sensors Fundamentals: Basic sensor technology Sensor Systems Sensor Characteristics System												
Sensors Fundamentals: Basic sensor technology, Sensor Systems, Sensor Characteristics, System												
Characteristics, Instrument Selection, Data acquisition, Installation. Process of developing sensors, sensor												
arrays smart sensors, Industrial sensor networking basic Elements. Smart sensors, sensor networks in R &												
D, sensors and networks, industrial network and automation.												
PROGRAMMABLE LOGIC CONTROLLER 10												
Define PLC, Technical Definition of PLC	C, Adv	antage	s, char	acterist	tics func	tions of	A PLC	, Chrono	ological			
Evolution of PLC, Types of PLC, Unita	ry PL	C, Mo	dular I	PLC, S	mall PL	.C, Mec	lium PL	C, Larg	e PLC,			
Block Diagram of PLC: Input/output (I	/O) se	ection,	Proces	ssor Se	ction, F	ower su	upply, N	/lemory	central			
Processing Unit: Processor Software / Exe	ecutive	e Softw	vare, M	ulti asl	king, La	nguages	, Laddei	Langua	ige.			
]	TOTAL	: 30 PE	RIODS			
COURSE OUTCOMES: At the end of th	he cou	rse, the	e stude	nt will	be able	to						
CO1: To understand the various graphica	l repre	esentati	on syst	tem in	Robotic	8						
CO2 : To understand the principle workin	g in M	lechatr	onics.									
CO3: To learn the fundamentals of sensor	rs.											
CO's PO's & PSO's MAPPING												
PO1 PO2 PO3 PO4 PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2			
CO1 3 2 3 3 3	2	-	-	2	2	2	3	3	2			
CO2 3 2 3 2 2	2	-	-	2	2	2	3	3	2			
CO3 3 2 3 2 2	1	-	-	2	2	2	3	3	2			
1- low, 2 - medium, 3 -	high,	'-' no	correla	ation								

IM660403 - PROFESSIONAL ETHICS (Common All Branches)

Course Category: Institute mandatory	Course Type: Theory	L	Т	P	С					
Course Category. Institute manuatory	Course Type. Theory	2*	0	0	0					
COURSE OBJECTIVES:										
• Students will evaluate the important	nce of Values and Ethics in their Pe	rsonal	lives a	nd profe	essional					
careers										
• The students will learn the rights a	nd responsibilities									
• Responsibilities of employee, team	n member and a global citizen.									
UNIT I: INTRODUCTION TO PROFE	CSSIONAL ETHICS				6					
Basic Concepts, Governing Ethics, Pe	rsonal &Professional Ethics, Eth	nical D	Dilemm	as, Lif	e Skills,					
Emotional Intelligence, Thoughts of Ethic	s, Value Education, Dimensions of	Ethics.								
UNIT II: BASIC THEORIES					6					
Basic Ethical Principles, Moral Developm	nents, Deontology, Utilitarianism, V	Virtue 7	Theory	, Rights	Theory,					
Casuist Theory, Moral Absolution, Moral Rationalism, Moral Pluralism, Ethical Egoism, Fem										
Consequentialism, Moral Issues, Moral D	ilemmas, Moral Autonomy.									
UNIT III: PROFESSIONAL PRACTIC	CES IN ENGINEERING				6					
Professions and Norms of Professiona	l Conduct, Norms of Profession	nal Co	onduct	vs. Pr	ofession;					
Responsibilities, Obligations and Moral V	alues in Professional Ethics, Profes	sional	codes o	of ethics	\$,					
the limits of predictability and responsib	ilities of the engineering profession	on, Cen	tral Re	sponsit	oilities of					
Engineers.										
UNIT IV: WORK PLACE RIGHTS &	RESPONSIBILITIES				6					
Ethics in changing domains of Research,	Engineers and Managers; Organiz	zational	l Comp	laint P	rocedure,					
difference of Professional Judgment wit	h in the Nuclear Regulatory Com	imissio	n (NR	C), the	Hanford					
Nuclear Reservation. Ethics in changing d	omains of research.									
UNIT V: GLOBAL ISSUES IN PROFE	SSIONAL ETHICS				6					
Introduction-Current Scenario, Technolog	gy Globalization of MNCs, Interna	tional 7	Frade,	World S	Summits,					
Issues, Business Ethics and Corporate	e Governance, Sustainable Deve	lopmer	nt Eco	system,	Energy					
Concerns, Ozone Deflection, Pollution, E	thics in Manufacturing and Marketi	ng, Me	dia Eth	ics; Wa	ar Ethics;					
Bio Ethics, Intellectual Property Rights										
		ſ	ΓΟΤΑΙ	.: 30 Pl	ERIODS					
COURSE OUTCOMES: At the end of the	ne course, the student will be able to)								
CO1: Analyse the basic purpose of profes	sion, professional ethics and variou	s moral	l and so	cial iss	ues					
CO2: Interpret the professional rights and	responsibilities of an Engineer, safe	ety and	risk be	enefit ar	nalysis					
CO3: Acquiring knowledge of various rol	es of Engineer In applying ethical p	orinciple	es							
CO4: Evaluate the safety precaution on nu	clear power plant and research-orie	ented an	nalysis.							

CO5: Evaluate the global issues, sustainable development and eco system.

CO's PO's & PSO's MAPPING															
0.0.3	1030		5 MIA		J										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	2	-	-	-	-	2	-	-	-	2	-	-	
CO2	3	2	2	-	-	-	-	2	-	-	-	2	-	-	
CO3	3	2	2	-	-	-	-	2	-	-	-	2	-	-	
CO4	CO4 3 2 2 - - - 2 - - 2 - -														
CO5	CO5 3 2 2 - - 2 - - 2 -														
1- low, 2 - medium, 3 - high, '-' no correlation															
TEXT	TEXT BOOKS:														
1.	Profes	sional	Ethics:	R. Sul	oraman	ian, Oz	xford U	Inivers	ity Pre	ss, Delh	i, 2 nd ed	ition, 20	15.		
2.	Ethics	in Eng	gineerir	ng Prac	tice &	Resear	ch, Ca	roline V	Whitbe	ck, Cam	bridge I	Universi	ty Press	2^{nd}	
	editior	n, 2015													
REFE	RENC	E BOO	OKS:												
1.	Engine	eering	Ethics,	Conce	pts Cas	ses: Ch	arles E	. Harri	s Jr., M	Iichael S	S Pritcha	ard, Mic	hae 1 J R	abins,	
	Cenga	ge lear	ning, 4	th editi	on, 201	5.									
2.	Busine	ess Eth	ics con	cepts &	& Cases	s: Man	uel G V	/elasqu	iez, PH	II, 6 th ed	ition, 20)08.			
WEB I	WEB RESOURCE:														

1. https://online courses.nptel.ac.in/noc22_mg54/preview

VERTICALS 1 TO 8

Vertical-1 **AERODYNAMICS AND PROPULSION** CURRICULUM

S. No.	Course Code	Course Title	Classification		L	Т	Р	С	
1	AE606101	Aircraft Design	Aircraft Design PEC Theo						
2	AE606102	Advanced propulsion systems	ed propulsion systems PEC T						
3	AE606103	Hypersonic aerodynamics	nic aerodynamics PEC Theor						
4	AE606104	High Speed Aerodynamics (NPTEL)	PEC	Theory	3	0	0	3	
5	AE606105	Wind Tunnel Techniques (NPTEL)	PEC	Theory	3	0	0	3	
6	AE606106	Structural Dynamics (NPTEL)	PEC	Theory	3	0	0	3	
7	AE606107	Aerospace Propulsion (NPTEL)	PEC	Theory	3	0	0	3	
8	AE606108	Gas Dynamics and Jet Propulsion	PEC	Theory	3	0	0	3	

AE606101 - A	AIRCRAFT DE	SIGN					
Course Cotegory Vertical 1	Course Type:	L	'	Т	P	C	
Course Category: Vertical I	Theory	3		0	0	3	
COURSE OBJECTIVES:						11	
• Analyze various concepts related to aircraft d	esign.						
• Estimate weight & geometrical parameters of	different types	of airci	afts				
•Analyze aerodynamic and stability characteris	stics during desi	gn of d	iffer	ent ty	pes of a	aircrafts.	
•Analyze and estimate performance parameters	s during aircraft	design.					
•Analyze and estimate structural aspects and ap	oply in aircraft c	esign.					
UNIT 1: INTRODUCTION							9
Aircraft design, Requirements and specification	ons, Airworthine	ss requ	iren	nents,	Import	ance of y	weight,
Aerodynamic and structural design consid	derations, Clas	sificati	ons	of a	airplane	e, Conc	ept of
configuration, Features of special purpose ai	rplanes, unman	ned ae	rial	vehic	les and	l their fe	eatures,
Control configured vehicles.							
UNIT 2: SYMMETRICAL MANEUVERING	G LOADS						9
Classical methods of estimating symmetrical	maneuvering 1	oads o	n a	wing	in flig	ht, Basic	flight

loading conditions, Load factor, V-n diagram, Gust loads, Estimation of gust loads, Gust envelope, Use of panel methods to estimate air load distribution on a wing.

9

9

9

UNIT 3: STRUCTURAL INTEGRATION

Structural layout of straight, tapered and swept (forward and aft) wings, Cockpit and passenger cabin layout, Layout of flight and engine controls, Wing fuselage joining methods, All metal airplane considerations, Use of composite materials, Preparation of 3-views, CG location.

UNIT 4: COMPLETE DESIGN PROBLEM

Preparation of conceptual design of an airplane from given specifications, Use and analysis of existing designs for this purpose, Design of airframe for the specifications, Prediction of performance, stability and control, Relaxed stability, Selection of engines from all considerations with all details, Freezing the design, Preparation of preliminary drawings including 3 views and layout.

UNIT 5: WING DESIGN

Factors influencing selection of airfoil and plan form, Span wise air loads variation, Super critical wing, Stalling, take-off and landing considerations, BM and SF diagrams, Design principles of all

metal, stressed skin wing (Civil & Military airplane), Estimation of wing drag.

TOTAL: 45 PERIODS

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1. The course enables students to understand and apply various concepts related to aircraft design.

CO2. The course enables students to conceptually design various types of aircrafts.

CO3.Analyse aerodynamic and stability characteristics during design of different types of aircrafts.

CO4. Analyze and estimate performance parameters during aircraft design.

CO5.Analyze and estimate structural aspects and apply in aircraft design.

CO'S PO'S&PSO'S MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1
CO2	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1
CO3	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1
CO4	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1
CO5	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1.D. P. Raymer, "Aircraft Design: A Conceptual Approach", 5 th Edition, AIAA Publication, 2012

2.DarrolStinton D., "The Design of the Aeroplane", 2nd Edition, Black Well Science, 2001.

3.J. D. Anderson Jr., "Aircraft Performance and Design", 3rd Edition, Tata McGrawHill, 2010.

REFERENCE BOOKS:

1.L.M.Nikolai, "Fundamentals of Aircraft Design", Illustrated edition , American Institute of Aeronautics & Astronautics; 2010

2.John J. Bertin and Russell M. Cummings, "Aerodynamics for Engineers", 5th Edition, Pearson Prentice Hall;

3. Advanced Vehicle Technology by Heinz Heisler MSc BSc FIMI MIRTE MCIT | 17 July 2002 148.

4. Advanced Motorsport Engineering: Units for Study at Level 3by Andrew Livesey | 1 September2011.

WEB RESOURCES:

1. Fundamentals of Electric vehicles: https://nptel.ac.in/courses/108106170

AE606102- ADVANCED PROPULSION SYSTEMS													
Course Category: Vertical 1	Course Type:		T	P									
COURSE OBJECTIVES:		5	U	U	5								
 To impart knowledge on the basic To learn about the physics of ioniz 	concepts of space	e propuls	sion.										
• To get familiarize with the typ propulsion systems.	pes of nuclear	rockets	and th	e basi	c conc	epts of nuclear							
 To study about the radioisotope propulsion. To realise the importance of advanced space propulsion concepts 													
UNIT 1: INTRODUCTION TO SPACE PROPULSIONSYSTEMS 9													
Historical outline, Scramjet Propulsion-Scramjet Inlets; Scramjet Performance, Chemical rocket Propulsion-													
Tri-propellants; Metalized Propellants; Free Radical Propulsion, Electric Propulsion, Micro propulsion -													
Micro Propulsion Requirements, MEMS and MEMS- Hybrid Propulsion Systems.													
UNIT 2: BASIC CONCEPTS OF IONIZED GASES 9													
Electromagnetic theory: electric charges and	fields, currents, a	nd magr	etic fie	lds, and	l applic	ations to ionized							
gases. Atomic structure of gases - Ionization	n processes - Par	ticle co	llisions	in an i	onized	gas – Electrical							
conductivity of an ionized gas - Kinetic Theorem	ry, Introduction to	o plasma	physic	s- Elect	trode pl	nenomena.							
UNIT 3: NUCLEAR ROCKET PROPULS	ION					9							
Nuclear Rocket Engine Design and Performation	nce, Types of Nu	clear Ro	ckets, C	Overall	Engine	Design, Nuclear							
Rocket Performance, Component Design, Nu	clear Rocket Rea	ctors, G	eneral I	Design	Consid	erations, Reactor							
Core Materials, Thermal Design, Mechanica	l Design, Nuclea	r Desigr	n, Shiel	ding, N	uclear	Rocket Nozzles,							
General Design Considerations, Heat-Transf	er Analysis, Ove	r- all Pi	oblem,	Hot-G	as Bou	ndary, Cold-Gas							
Boundary.													
UNIT 4: RADIOISOTOPE PROPULSION						9							
Alternative Approaches, Direct Recoil Meth	od, Thermal Hea	ating M	ethod, I	Basic T	hruster	Configurations,							
Propulsion System and Upper Stage, Re	lative Mission	Capabili	ties, P	rimary	Propu	lsion, Auxiliary							
Propulsion, Thruster Technology, Design Criteria, Performance, Safety, Heat Source Development,													
Radioisotope Fuel, Capsule Technology, General Considerations, Thermal Design, Fabrication and Non-													
Destructive Testing Techniques, Pressure Con	ntainment, Heat S	Source S	imulatio	on, Oxi	dation	and Corrosion of							
Encapsulating Materials, Nozzle Performance	2.												

UNIT 5: ADVANCED SPACE PROPULSION CONCEPTS	9
Introduction, General Consideration for Propulsion in Space, Power Supply, Propella	nt Storage and
Handling Facilities, Electrostatic and Electromagnetic Thrusters, Advanced Electric Propuls	ion Systems for
Space Vehicles, Sputtering, A Thrust Generation Mechanism, Sputtering Phenomena, Possil	ole Performance
of Sputtering Thrusters, Energy Efficiency of the Sputtering Process, Analyses of an Elen	nentary Mission
with Different Electric Thrusters, General Consideration, Performance Formula for Electric	ctric Thrusters,
Optimization with Electric Thrusters.	

TOTAL: 45 PERIODS

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1: Have knowledge on the basics and classification of space propulsion.

CO2: Comprehend the physics of ionized gases, their theories and particle collisions.

CO3: Demonstrate the working, types and performance of nuclear rockets with their design considerations.

CO4: Learn the basics of radioisotope propulsion with their performance studies.

CO5: Have knowledge on advanced methods of space propulsion systems with new thrust generation mechanisms.

CO'S PO'S&PSO'S MAPPING

	DO1	1 PO2 PO3 PO4 PO5 PO6 PO	DO7	DOQ	DOO	РО	РО	РО	PSO	PSO	PSO				
	POI	PO2	PO3	PO4	P05	PO6	PO/	P08	PO9	10	11	12	1	2	3
CO1	3	2	2	1	2	1	-	-	-	1	-	1	2	1	-
CO2	3	2	1	1	2	1	-	-	-	1	-	1	2	1	-
CO3	3	2	1	1	2	1	-	-	-	1	-	1	2	1	-
CO4	3	2	1	1	2	1	-	-	-	1	-	1	2	1	-
CO5	3	1	1	-	1	1	-	-	-	-	-	1	2	1	-

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Czysz, Paul A., Bruno, Claudio, Chudoba, Bernd "Future Spacecraft Propulsion Systems and Integration", Springer, Praxis Publishing Ltd, 2018.

2. George W. Sutton, "Engineering Magneto hydrodynamics", Dover Publications Inc., New York, 2006.

3. George P. Sutton & Oscar Biblarz, "Rocket Propulsion Elements, John Wiley & Sons Inc., NewYork, 9th Edition, 2016.

REFERENCE BOOKS:

1. Martin Tajmar, "Advanced Space Propulsion Systems" Springer Verlag GmbH, 2003.

2. Robert G. Jahn, "Physics of Electric Propulsion", McGraw-Hill Series, New York, 1968.

3. William J. Emrich, "Principles of Nuclear Rocket Propulsion" Elsevier Science, 2016.

WEB RESOURCES:

1.Advanced Propulsion: https://www.youtube.com/watch?v=537WEv1s-SA

AE606103 - HYPERSONIC AERODYNAMICS												
Course Category: Vertical 1	Course Type:	L	Т	Р	С							
Course Category. Vertical 1	Theory	3	0	0	3							
COURSE OBJECTIVES:												
• To learn basics of hypersonic flow,	, shock wave, bour	ndary la	yer int	eraction	n and a	erodynamic						
heating.												
• To extend the surface inclination methods for hypersonic inviscid flows.												
• To explain the approximate methods for inviscid hypersonic flows												
• To familiarize them with the aerodynamical aspects of hypersonic vehicles and the general.												
• To understand the viscous interactions in hypersonic viscous flow.												
UNIT 1: BASICS OF HYPERSONIC AERODYNAMICS9												
Thin shock layers - entropy layers - low de	ensity and high-der	nsity flo	ows –	hyperso	onic flig	ght paths –						
hypersonic flight similarity parameters - shock	wave and expansi	on wave	e relatio	ons of i	inviscid	hypersonic						
flows.												
UNIT 2: SURFACE INCLINATION METHO	DDS FOR HYPERS	SONIC	INVIS	CID FI	LOWS	9						
Local surface inclination methods - modified	Newtonian Law -	- Newto	nian th	eory –	tangen	t wedge or						
tangent cone and shock expansion methods – Ca	lculation of surface	flow pro	operties	•								
UNIT 3: APPROXIMATE METHODS FOR INVISCID HYPERSONIC FLOWS 9												
Approximate methods - hypersonic small distur	rbance equation and	theory	– thin	shock]	layer the	eory – blast						
wave theory - entropy effects - rotational met	hod of characteristi	cs – hyp	personi	c shock	k wave,	shapes and						
correlations.												
UNIT 4: VISCOUS HYPERSONIC FLOW T	HEORY					9						
		·	1	•	1 1	1						

Navier-Stokes equations - boundary layer equations for hypersonic flow - hypersonic boundary layer hypersonic boundary layer theory and non-similar hypersonic boundary layers - hypersonic aerodynamic heating and entropy layers effects on aerodynamic heating - heat flux estimation.

UNIT 5: VISCOUS INTERACTIONS IN HYPERSONIC FLOWS	9
Strong and weak viscous interactions - hypersonic shockwaves and boundary layer interactions -	- Estimation
of hypersonic boundary layer transition - Role of similarity parameter for laminar viscous inter-	eractions in
hypersonic viscous flow.	
TOTAL: 45	PERIODS
COURSE OUTCOMES: At the end of the course, the student will be able to	
CO1: Explain shock wave and expansion wave relations of inviscid hypersonic flows.	
CO2: Explain the solution methods for hypersonic inviscid flows	

CO3: Analyze the hypersonic boundary layers

CO4: Explain the viscous interaction in hypersonic flows

CO5: Analyze chemical and temperature effects in hypersonic flow

CO'S PO'S&PSO'S MAPPING

PC	DO1	DO2	DO2		DOS	DOC	DO7		DOO	PO	PO	PO	PSO	PSO	PSO
	POI	PO2	P03	PO4	P05	POo	PO/	PU8	P09	10	11	12	1	2	3
CO1	3	2	1	1	1	-	-	-	-	1	1	1	3	2	-
CO2	3	2	1	1	2	-	-	-	-	1	1	1	3	2	-
CO3	3	3	2	-	2	-	-	-	-	1	1	2	3	1	-
CO4	3	2	1	2	3	-	-	-	-	1	1	2	3	1	-
CO5	3	2	1	1	2	-	-	_	-	1	1	1	3	2	-

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. AndersonJ. D., "Hypersonic and High Temperature Gas Dynamics", AIAA Education Series, 2nd Ed., 2006.

2. AndersonJ. D., "Modern Compressible Flow with Historical Perspective", TMH, 3rd Ed., 2012.

3. Parton, V. Z., "Super- and Hypersonic Aerodynamics and Heat Transfer", CRC Press, 2018.

REFERENCE BOOKS:

1. Heiser, W. H. and Pratt, D. T., "Hypersonic Air Breathing Propulsion", AIAA, 1994.

2. John T. Bertin, "Hypersonic Aerothermodynamics", AIAA Inc., Washington DC, 1994

3. T.K.S. Murthy, "Computational methods in hypersonic aerodynamics", Kluwer Academic Publishers, 1991.

WEB RESOURCES:

1. Hypersonic aerodynamics: https://archive.nptel.ac.in/courses/101/103/101103003/

AE606104- HIGH SPEED AERODYNAMICS (NPTEL)						
Course Category: Vertical 1	Course Type:	L	T	P	C	
COURSE OBJECTIVES:	Theory	3	0	0	3	
To get insight into the basic aspects of compressible flow						
To get insight into the basic aspects of compressible now.						
• To arrive at the shock wave and expansion wave relations.						
• To get exposure on potential equation for 2-dimensionla compressible flow.						
• To get knowledge on high speed flow over airfoils, wings and airplane configuration.						
• To gain basic knowledge on low and high speed wind tunnels.						
UNIT 1: FUNDAMENTAL ASPECTS OF COMPRESSIBLE FLOW					<u>9</u>	
Compressionity, Continuity, Womentum and energy equation for steady one dimensional how-compressione						
Bernoulli's equation-Calorically perfect gas, Mach Number, Speed of sound, Area – Mach number – Velocity						
relation, Mach cone, Mach angle, One dimensional Isentropic flow through variable area duct, Static and						
Stagnation properties, Critical conditions, Characteristic Mach number, Area-Mach number relation,						
Maximum discharge velocity.						
UNIT 2: WAVES IN SUPERSONIC FLOW						9
Normal shock relations, Prandtl's relation-Hugoniot equation, Raleigh Supersonic Pitot tube equation-						
Moving normal shock waves, Oblique shocks, θ - β -M relation, Shock Polar, Reflection of oblique shocks, left						
running and right running waves-Interaction of oblique shock waves, slip line, Rayleigh flow, Fanno flow,						
Expansion waves, Prandtl-Meyer expansion, Maximum turning angle, Simple and non-simple regions,						
operating characteristics of Nozzles, under expansion, over expansion.						
UNIT 3: FLOWS IN DUCTS AND WIND TUNNEL					9	
Flow in ducts Nozzle and Diffuser - Flow in Wind Tunnel - Muti dimensional Problems						
UNIT 4: HIGH SPEED FLOW OVER AIRFOILS, WINGS AND AIRPLANE CONFIGURATION				9		
Critical Mach number, Drag divergence Mach number, Shock Stall, Supercritical Airfoil Sections, Transonic						
area rule, Swept wing, Airfoils for supersonic flows, Lift, drag, Pitching moment and Centre of pressure for						
supersonic profiles, Shock expansion theory, wave drag, supersonic wings, Design considerations for						
supersonic aircrafts						
UNIT 5: CHARACTERIZATION OF HIGH	SPEED FLOWS					9
Shock-Boundary layer interaction, Wind tunnels for transonic, Supersonic and hypersonic flows, shock tube,						
Gun tunnels, Supersonic flow visualization, Introduction to Hypersonic Flows.						
TOTAL: 45 PERIODS						
COURSE OUTCOMES: At the end of the course, the student will be able to						
CO1. Analyze the effect of compressibility at high-speeds and to make intelligent design decisions based on this understanding						

CO2. Analyse about shock waves and expansion waves.
CO3. Calculate 2D compressible flows.

CO4. Estimate the high speed flow over airfoils and wings.

CO5. Analyze the high speed flow

CO'S PO'S&PSO'S MAPPING

	DO1	DOD	DO2		DOS	DOC	DO7		DOO	РО	PO	PO	PSO	PSO	PSO
	POI	PO2	P03	P04	P05	POo	PO/	PU8	P09	10	11	12	1	2	3
CO1	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1
CO2	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1
CO3	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1
CO4	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1
CO5	2	1	1	1	_	-	2	-	1	-	-	1	1	2	1

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Anderson, J. D, Modern Compressible Flow: With Historical Perspective McGraw-Hill Education; 3rd edition, 2003.

2. Rathakrishnan. E, Gas Dynamics, Prentice-Hall of India Pvt., Ltd, 2008.

3. William Rees Sears (eds.)"General Theory of High Speed Aerodynamics" Princeton University Press, 1954.

REFERENCE BOOKS:

1. Oosthuizen, P.H., & Carscallen, W.E., Compressible Fluid Flow, CRC Press; 2nd edition (July22, 2013)

2. Shapiro, A. H., Dynamics and Thermodynamics of Compressible Fluid Flow, Ronald Press, 1982.

3. Zucrow, M. J. and Anderson, J. D., Elements of Gas Dynamics, McGraw-Hill &Co., 1989.

4. William Hawthorne"Aerodynamics of Turbines and Compressors. (HSA-1), Princeton University Press, Volume 1"2017

WEB RESOURCES:

1. High speed aerodynamics:https://archive.nptel.ac.in/courses/101/105/101105023/

AE606105 - WIND TUNNEL TECHNIQUES (NPTEL)										
Course Category: Vertical 1	Course Type: Theory	L 3	Т 0	P 0	C 3					
COURSE OBJECTIVES:	L L									
• To learn the Types of low speed Wind	tunnels and non-	-dimensi	onal n	umbers	with its	applications.				
• To learn the Types of high speed Win	d tunnels and with	h its cali	bratior	n metho	ds.					
• To Understand the Special Wind tunn	els and with its ca	alibration	n meth	ods with	h its des	ign methods.				
• To describe flow visualization technic	ques and data acqu	uisition 1	nethod	ls						
• To understand the functions of variou	s instruments asso	ociated v	vith wi	nd tunn	el					
UNIT 1: LOW SPEED WIND TUNNELS						9				
Classification -non-dimensional numbers-ty	pes of similaritie	es - Lay	out of	open	circuit	and closed circuit				
subsonic wind tunnels – design parameters-er	nergy ratio - HP c	alculatio	ons - Ca	alibratio	on meth	ods.				
UNIT 2: HIGH SPEED WIND TUNNELS						9				
Blow down, in draft and induction tunnel lay	outs and their des	ign feat	ures -T	ransoni	c, and s	upersonic tunnels-				
peculiar features of these tunnels and operation	ational difficultie	s - sam	ple de	sign ca	lculation	ns and calibration				
methods										
UNIT 3: SPECIAL WIND TUNNEL TEC	HNIQUES					9				
Types of Special Wind Tunnels - Hyperso	nic, Gun and Sh	ock Tun	inels –	Design	n featur	es and calibration				
methods- Intake tests – store carriage and sep	paration tests - wir	nd tunne	l mode	l desigr	n for the	se tests				
UNIT 4: WIND TUNNEL INSTRUMENT.	ATION					9				
Instrumentation and sensors required for both	n steady and unste	eady mea	asurem	ents – I	Force m	easurements using				
three component and six component balance	es – calibration o	f measu	ring in	strumei	nts – er	ror estimation and				
uncertainty analysis.										
UNIT 5: FLOW VISUALIZATION and N	ON-INTRUSIVE	E FLOW	DIA	GNOST	TICS	9				
Smoke and Tuft grid techniques – Dye in	njection special	techniqu	ies –	Oil flo	w visua	lization and PSP				
techniques - Optical methods of flow visual	ization – PIV and	l Laser I	Dopple	er techn	iques –	Image processing				
and data deduction.										
					TOT	AL: 45 PERIODS				
COURSE OUTCOMES: At the end of the co	ourse, the student v	will be al	ole to							
CO1. Explain the uses of various types of tun	nels and its losses	8.								
CO2. Experiment with calibration of differen	t types of high sp	eed tunn	els.							
CO3. Make use of various special tunnels and	d its applications.									
CO4. Make use of various measurement tech	niques of instrum	ents of v	vind tu	nnel.						
CO5. Can use various techniques for aerodyn	amic data generat	tion.								

CO'S PO'S&PSO'S MAPPING

	DO1	DOJ	DO2		DO5	DOC	DO7		DOO	PO	PO	PO	PSO	PSO	PSO
	POI	PO2	P03	PO4	P05	POo	PO/	PU8	P09	10	11	12	1	2	3
CO1	1	2	1	-	-	-	-	-	-	-	-	1	2	-	-
CO2	1	3	-	-	-	-	-	-	-	-	-	1	3	1	-
CO3	1	3	1	-	-	-	-	-	-	-	-	1	3	-	-
CO4	1	3	-	-	3	-	-	-	-	-	-	1	2	1	1
CO5	1	1	1	-	-	-	-	-	-	-	-	1	3	1	1

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. NAL-UNI lecture series 12:" experimental aerodynamics", nalsp 98 01 april 1998.

2. Rae, W.H. and Pope, a., "Low speed wind tunnel testing", John Wiley publication, 1984.

3. Friedrich Wilhelm Riegels "Aerofoil sections: Results from wind-tunnel investigations, theoretical foundations" Butterworth & Co. (Publishers) Ltd., London, 1961.

REFERENCE BOOKS:

1. Lecture course on Advanced Flow diagnostic techniques 17-19 September 2008 NAL, Bangalore

2. Pope, A., and Goin, L., "High Speed Wind Tunnel Testing", John Wiley, 1985.

3. Rathakrishnan, E., "Instrumentation, Measurements, and Experiments in Fluids," CRC Press – Taylor & Francis, 2007.

4. Short term course on Flow visualization techniques, NAL, 2009

WEB RESOURCES:

1. Wind tunnel techniques: https://nptel.ac.in/courses/101106040

AE606106- STRUCTURAL DYNAMICS (NPTEL)											
Course Cotogowy Ventical 1	Course Type:	L	Т	Р	С						
Course Category: Vertical I	Theory	3	0	0	3						
COURSE OBJECTIVES:											

• Demonstrate the knowledge of mathematics, science, and engineering by developing the equations of motion for vibratory systems and solving for the free and forced response.

- Evaluate to identify, formulate and solve engineering problems. This will be accomplished behaving students' model, analyze and modify a vibratory structure order to achieve specified requirements
- Introduce to structural vibrations which may affect safety and reliability of engineering

LINUT 1. CINCLE DECIDEE OF EDEEDON (LINEAD CVCT	0
UNIT I: SINGLE-DEGREE-OF-FREEDOM LINEAR SYST	9
Introduction to theory of vibration, equation of motion, free vibration, response to harm	onic excitation,
response to an impulsive excitation, response to a step excitation, response to periodic exc	citation (Fourier
series), response to a periodic excitation (Fourier transform), Laplace transform (Transfer Func	tion).
UNIT 2: TWO-DEGREE-OF-FREEDOM SYSTE	9
Introduction, Equations of Motion for Forced Vibration, Free Vibration Analysis of an Und	ammed System,
Torsional System, Coordinate Coupling and Principal Coordinates, Forced-Vibration Analysi	s, Semi definite
Systems, Self-Excitation and Stability Analysis, Transfer- Function Approach, Solutions	Using Laplace
Transform, Solutions Using Frequency Transfer Function.	
UNIT 3 MULTI-DEGREE-OF-FREEDOM LINEAR SYST	9
Matrix formulation, stiffness and flexibility influence coefficients; Eigen value problem; nor	rmal modes and
their properties; Free and forced vibration by Modal analysis; Method of matrix inver	sion; Torsional
vibrations of multi- rotor systems and geared systems; Discrete- Time system.	
UNIT 4: DYNAMICS OF CONTINUOUS ELASTIC BO	9
Introduction, transverse vibration of a string or cable, longitudinal vibration of a bar or rod, to	sional vibration
of shaft or rod, lateral vibration of beams, the Rayleigh-Ritz m	
UNIT 5: NTRODUCTION TO AEROELASTICITY	9
tatic Aeroelasticity; Typical Section Model of an Airfoil: Typical Section Model with Control S	Surface, Typical
Section Model-Nonlinear Effects. One Dimensional Aeroelastic Model of Airfo	ils: Beam-Rod
Representation of Large Aspect Ratio Wing, Eigenvalue and Eigen function Approach, Gale	erkin's Method.
Dynamic Aeroelasticity; Hamilton's Principle: Single Particle, Many Particles, Continuous	Body, Potential
Energy, Non potential Forces, Lagrange's Equations.	
ΤΟΤΑΙ	L: 45 PERIODS
COURSE OUTCOMES: At the end of the course, the student will be able to	
CO1: Explain the concepts of the equation of motion of free vibration and its response for	determining the
nature of single degree of freed.	
CO2: Demonstrate the response of step function, periodic excitation (Fourier series and tran	nsform, Laplace
transform) of Single DOF for determining the freely vibrating of a body	
CO3: Construct the equation of motion of free vibration for the design of the analysis of	the spring-mass
system.	
CO4: Apply the various equations of forced vibration for determining the frequency of the bod	у
CO5: Analysis the torsional vibrations of rotor and geared systems for determining the DOF	of the vibrating
system.	
UU'S ru'S&rou'S MArring	

	DO1	DOJ	DO2		DO5	DOC	DO7		DOO	РО	РО	РО	PSO	PSO	PSO
	POI	PO2	PO3	P04	P05	POo	PO/	PU8	P09	10	11	12	1	2	3
CO1	3	3	2	2	-	-	-	-	-	1	-	2	-	3	3
CO2	3	3	-	2	1	-	-	-	-	1	-	2	-	2	2
CO3	3	2	2	-	2	1	1	-	-	-	1	1	1	2	1
CO4	3	2	1	-	1	-	-	2	-	-	1	1	2	1	1
CO5	3	3	2	1	2	1	-	2	1	1	2	2	2	2	2

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Bismarck-Nasr, M.N., "Structural Dynamics in Aeronautical Engineering", AIAA Education Series, 2nd Edition, 1999.

2. Rao, S.S., "Mechanical Vibrations", Prentice-Hall, 5 th Edition, 20.

3. Earl H. Dowell, "A Modern Course in Aeroelasticity" Volume 217, Duke University, Durham, NC, USA.

REFERENCE BOOKS:

1 http://www.gregorypaulblog.com/structural-dynamics-in-aeronautical-engineering-aiaa-education- series.pdf

2. https://aerocastle.files.wordpress.com/2012/10/mechanical_vibrations_5th-edition_s-s-rao.pd.

3. Leissa, A.W., Vibration of continuous system, The McGraw-Hill Company, 2 nd Edition, 2011

4 Inman, D.J., Vibration Engineering, Prentice Hall Int., Inc., 3 rd Edition, 2001

WEB RESOURCES:

1http://ase.sbu.ac.ir/FA/Staff/abbasrahi/Lists/Dars/Attachments/11/Vibrations%20of%20Continuous%20Systems.pdf

AE606107- AEROS	PACE PROPULSION	N (NPT	EL)			
Course Cotogony Vertical 1	Course Type:	L	Т	P	С	
Course Category: Vertical 1	Theory	3	0	0	3	
COURSE OBJECTIVES:						
• To impart knowledge on the basic cond	cepts of space propulsion	on.				
• To learn about the physics of ionized g	ases					
• To get familiarize with the types of nuc	clear rockets and the b	asic con	cepts of	nuclea	r propu	ulsion sys-
tems.						
• To study about the radioisotope propul	sion.					
• To realise the importance of advanced	space propulsion conce	epts.				
UNIT 1: INTRODUCTION TO SPACE PROP	PULSIONSYSTEMS					9
Historical outline, Scramjet Propulsion-Scramje	et Inlets; Scramjet Perl	formance	e, Chen	nical ro	cket P	ropulsion-

Tri-propellants; Metalized Propellants; Free Radical Propulsion, Electric Propulsion, Micro propulsion - Micro Propulsion Requirements, MEMS and MEMS- Hybrid Propulsion Systems..

UNIT 2: BASIC CONCEPTS OF IONIZED GASES

Electromagnetic theory: electric charges and fields, currents, and magnetic fields, and applications to ionized gases. Atomic structure of gases - Ionization processes - Particle collisions in an ionized gas – Electrical conductivity of an ionized gas - Kinetic Theory, Introduction to plasma physics- Electrode phenomena.

UNIT 3: NUCLEAR ROCKET PROPULSION

Nuclear Rocket Engine Design and Performance, Types of Nuclear Rockets, Overall Engine Design, Nuclear Rocket Performance, Component Design, Nuclear Rocket Reactors, General Design Considerations, Reactor Core Materials, Thermal Design, Mechanical Design, Nuclear Design, Shielding, Nuclear Rocket Nozzles, General Design Considerations, Heat-Transfer Analysis, Over- all Problem, Hot-Gas Boundary, Cold-Gas Boundary.

UNIT 4: RADIOISOTOPE PROPULSION

Alternative Approaches, Direct Recoil Method, Thermal Heating Method, Basic Thruster Configurations, Propulsion System and Upper Stage, Relative Mission Capabilities, Primary Propulsion, Auxiliary Propulsion, Thruster Technology, Design Criteria, Performance, Safety, Heat Source Development, Radioisotope Fuel, Capsule Technology, General Considerations, Thermal Design, Fabrication and Non-Destructive Testing Techniques, Pressure Containment, Heat Source Simulation, Oxidation and Corrosion of Encapsulating Materials, Nozzle Performance.

UNIT 5: ADVANCED SPACE PROPULSION CONCEPTS

Introduction, General Consideration for Propulsion in Space, Power Supply, Propellant Storage and Handling Facilities, Electrostatic and Electromagnetic Thrusters, Advanced Electric Propulsion Systems for Space Vehicles, Sputtering, A Thrust Generation Mechanism, Sputtering Phenomena, Possible Performance of Sputtering Thrusters, Energy Efficiency of the Sputtering Process, Analyses of an Elementary Mission with Different Electric Thrusters, General Consideration, Performance Formula for Electric Thrusters, Optimization with Electric Thrusters.

TOTAL: 45 PERIODS

9

9

9

9

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1: Have knowledge on the basics and classification of space propulsion.

CO2: Comprehend the physics of ionized gases, their theories and particle collisions.

CO3: Demonstrate the working, types and performance of nuclear rockets with their design considerations.

CO4: Learn the basics of radioisotope propulsion with their performance studies.

CO5: Have knowledge on advanced methods of space propulsion systems with new thrus generation mechanisms CO'S PO'S&PSO'S MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
	101	102	100	101	100	100	10,	100	107	0	1	2	1	2	3
CO1	3	2	2	1	2	1	-	-	-	1	-	1	2	1	-
CO2	3	2	1	1	2	1	-	-	-	1	-	1	2	1	
CO3	3	2	1	1	2	1	-	-	-	1	-	1	2	1	1
CO4	3	2	1	1	2	1	-	-	-	1	-	1	2	1	1
CO5	2	1	1	-	1	1	-	-	-	-	-	1	2	1	1

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Czysz, Paul A., Bruno, Claudio, Chudoba, Bernd "Future Spacecraft Propulsion Systems and Integration", Springer, Praxis Publishing Ltd, 2018

2. George W. Sutton, "Engineering Magneto hydrodynamics", Dover Publications Inc., New York, 2006.

3. Timoshenko, S.P, and Goodier, T.N., Theory of Elasticity, McGraw – Hill Ltd., Tokyo, 1990.

REFERENCE BOOKS:

1. Robert G. Jahn, "Physics of Electric Propulsion", McGraw-Hill Series, New York, 1968.

2. William J. Emrich, "Principles of Nuclear Rocket Propulsion" Elsevier Science, 2016.

WEB RESOURCES:

1AEROSPACE PROPULSION : https://nptel.ac.in/courses/105105177

AE606108 - GAS DYNAMICS AND JET PROPULSION											
Course Category: Vertical 1	Course Type: Theory	L 3	T 0	P 0	C 3	-					
COURSE OBJECTIVES:					•						
• To analysis the phenomenon o	f shock waves and its effect on	n flow. To	o gain s	ome							
• To analysis the basic differen	ce between incompressible an	d compre	essible	flow.	basic k	nowledge					
about jet propulsion and Rocke	et Propulsion										
UNIT 1: BASIC CONCEPTS AND IS	ENTROPIC FLOWS					9					
Energy and momentum equations of cor	npressible fluid flows – Stagna	ation state	es, Mac	h wave	s and M	Iach cone					
– Effect of Mach number on compressib	ility – Isentropic flow through	variable	ducts –	Nozzle	e and D	iffuse.					
UNIT 2: FLOW THROUGH DUCTS						9					
Flows through constant area ducts with h	neat transfer (Rayleigh flow) and	d Friction	(Fanno	flow) -	- variati	on of flow					
properties											
UNIT 3: NORMAL AND OBLIQUE	SHOC					9					
Governing equations – Variation of flow	w parameters across the norma	al and obl	lique sł	ocks –	Prandt	l – Meyer					
relations – Application											

UNIT 4	: JET]	PROPU	ULSIO	N										ç)
Theory	of jet p	propuls	ion – 7	Thrust	equation	on – T	hrust p	ower a	nd pro	pulsive	efficie	ency –	Operat	ting pri	inciple,
cycle an	alysis a	and use	of stag	gnation	state p	perform	nance o	f ram j	et, turb	ojet, tu	rbofan	and tu	rbo pro	p engir	nes
UNIT 5	: SPAC	CE PRO	OPULS	SION										9)
Types of	of rock	tet eng	gines –	Prope	ellants-	feeding	g syste	ms –	Ignitio	n and	combu	ustion -	- Theo	ory of	rocket
propulsi	on – Pe	erforma	ance stu	udy – S	staging	– Tern	ninal a	nd char	acteris	tic velo	city –	Applica	ations -	- space	flight
												TO	TAL:	45 PEI	RIODS
COURS	SE OU	ГСОМ	IES: At	t the en	d of the	e course	e, the st	udent v	will be a	able to					
CO1: A	pply th	e conce	ept of c	ompre	ssible f	lows ir	n variat	ole area	ducts.						
CO2: A	pply th	e conce	ept of c	ompre	ssible f	lows ir	n consta	ant area	a ducts						
CO3: ex	amine	the eff	ect of c	ompre	ssion a	nd exp	ansion	waves	in com	pressib	le flow	/			
CO4: us	e the c	oncept	of gas	dvnam	ics in J	et Pror	oulsion								
CO5: ar	only the	conce	nt of g	as dyna	mics i	n Snace	Propu	lsion							
CO3. ap	pry the	conce	prorge	us dyne	unics n	I Space	riopa								
CO'S P	O'S&I	PSO'S	MAPP	ING		ľ	1	1	1		ſ	1		1	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
										0	1	2	1	2	3
CO1	2	-	3	-	-	-	-	-	-	-	-	2	2	-	-
CO2	-	3	-	2	-	-	-	-	2	-	-	-	-	2	1
CO3	2	-	3	-	-	-	-	-	-	-	-	2	2	-	-
CO4	2	-	-	2	3	-	-	-	-	-	-	-	-	-	-
CO5	-	3	-	-	-	-	-	-	-	-	-	-	-	-	
		1	- low, 2	2 - meo	lium, 3	3 - higł	n, '-' n	o corre	elation			•		•	
TEXT I	SOOK	<u>5:</u> П "М	odorn	Compr	angibla	flow"	2 rd E	dition	MaGro	w U;11	201				
2 Vohu	\sim S M	"Fund	omonto		ompro	now,	Flow"	Now A	go Into	motion	$\frac{201}{1}$	Limitor	1 Now	Dalhi	2002
	a, S.WI.				ompre	ssible I	10w ,	new A	ge me	mation	ai (r) 1	Liiiitet	I, INEW	Denn,	2002
1 Cohe			Rogers	and Sa	ravana	mutto	"Gas T	Furbing	Theor	v" Lor	aman	Group	Itd 10	080	
2 Conce	$\frac{1.11., C}{2}$	"Goo '	Turhin		$\frac{1}{10}$	Traw LI	ill Dub	lishing	$\frac{1}{100}$	y, LUI	$\frac{1}{1}$		Liu.,19	00	
2. Galles	$\frac{1}{r_0} \wedge L$, Uas	namico	and T	hermod	Jaw II	cs of C	ompro	$\frac{1}{1}$		m, 201	$\frac{10.}{10}$	av Nor	v Vork	1053
J. Shapi	10. A.I	л., Dy	nannes			1 y 11 al 11 l		ompre	5510101		Jvv , JC	7111 W110	cy, men	W IUIK	, 1755

WEB RESOURCES:

1. jet propulsion - https://nptel.ac.in/courses/101104005

Vertical-2

AEROSPACE STRUCTURES

CURRICULUM

S. No.	Course Code	Course Title	Classification		L	Т	Р	С
1	AE606201	Fatigue and fracture mechanism (NPTEL)	PE	Theory	3	0	0	3
2	AE606202	Experimental stress analysis (NPTEL)	PE	Theory	3	0	0	3
3	AE606203	Aerospace materials	PE	Theory	3	0	0	3
4	AE606204	Additive manufacturing (NPTEL)	PE	Theory	3	0	0	3
5	AE606205	Non-destructive testing and evaluation (NPTEL)	PE	Theory	3	0	0	3
6	AE606206	Aerospace manufacturing technology	PE	Theory	3	0	0	3
7	AE606207	Aircraft Stress Analysis	PE	Theory	3	0	0	3
8	AE606208	Nano materials and aero applications	PE	Theory	3	0	0	3
9	AE606209	Aircraft High temperature Materials	PE	Theory	3	0	0	3

AE606201- FATIGUE AND FRACTURE MECHANISM									
Course Category: Vertical 2	Course Type: Theory		T 0	P 0	C 3				
COURSE OBJECTIVES:		0	U	U	0				
•To impart knowledge in structural int	tegrity in the context of	of fatigue	e failure	e.					
•To gain knowledge in statistical aspe	cts of fatigue behaviou	ur and R	-S-N ci	urve.					
•To impart knowledge in physical asp	ects of fatigue.								
•To familiarize the student with theorem	retical fracture mechan	nics and	make	compet	ent to c	carry out			
simple fracture analysis procedures									
•To enable the student to appreciate the	ne different aspects of	fatigue t	esting	methods	5				
UNIT 1: FATIGUE OF STRUCTURES						9			
S.N. curves - Endurance limits - Effect of me	ean stress, Goodman,	Gerber	and So	oderber	g relati	ons and			
diagrams - Notches and stress concentrations	- Neuber's stress c	concentra	ation f	actors	- Plast	ic stress			
concentration factors - Notched S.N. curves - Fa	tigue of composite ma	terials.			-				
UNIT 2: STATISTICAL ASPECTS OF FATIO	GUE BEHAVIOUR					9			
Low cycle and high cycle fatigue - Coffin - Mar	nson's relation - Trans	ition life	e - cycl	ic strair	harde	ning and			
softening - Analysis of load histories - Cycle co	ounting techniques -C	umulati	ve dam	age - N	liner's	theory -			
Other theories - Reliability study on fatigue (R-S	-N curve).								
UNIT 3: PHYSICAL ASPECTS OF FATIGUI	E					9			
Phase in fatigue life - Crack initiation - Crack	growth - Final Frac	ture - D	Dislocat	ions -	fatigue	fracture			
surfaces.									
UNIT 4: FRACTURE MECHANICS						9			
Modes of failure - Potential energy and surfac	e energy - Griffith's	theory -	- Irwin	- Orw	in exte	nsion of			
Griffith's theory to ductile materials - stress an	alysis of "cracked bo	dies - E	effect of	f thickr	less on	fracture			
toughness" - stress intensity factors for typical 'g	eometries.								
UNIT 5: FATIGUE DESIGN AND TESTING						9			
Safe life and Fail-safe design philosophies - Impo	ortance of Fracture Me	echanics	in aero	space s	tructure	es			
]	TOTAL	.: 45 PI	RIODS			
COURSE OUTCOMES: At the end of the course	e, the student will be al	ole to							
CO1: Develop a solid foundation in the theory, c	oncepts and principles	of fract	ure me	chanics	,				
CO2: Able to use these solutions to guide a c reliability on fatigue.	orresponding design,	manufa	cture, o	or failu	re anal	ysis and			
CO3: Ability to investigate the life of a structure	under dynamic loadin	g condit	ions.						
CO4: Knowledge of fracture mechanics approach	n applicable to homoge	eneous a	and hete	erogene	ous ma	terials			

CO5: Knowledge of probalistic approach and development of mathematical models for life prediction of

structures and knowledge of safe life and fail safe design.

	~															
CO'S I	PO'S&	PSO'S	MAPI	PING												
	PO1	PO2	PO3		PO5	PO6	PO7	PO8	POQ	PO	PO	РО	PSO	PSO	PSO	
	101	102	105	104	105	100	107	100	10)	10	11	12	1	2	3	
CO1	3	3	2	2	2	-	-	-	-	1	-	2	-	3	3	
CO2	3	3	1	2	1	-	-	-	-	1	-	2	-	3	2	
CO3	3	2	2	1	2	1	1	-	-	-	1	1	2	2	1	
CO4	3	2	1	-	1	-	-	2	-	-	1	1	2	1	1	I
CO5	3	3	2	1	2	1	-	2	1	1	2	2	2	2	2	I

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Barrois W, Ripely, E.L., "Fatigue of aircraft structure," Pergamon press. Oxford, 1983.

2. Prashant Kumar – Elements of fracture mechanics" Tata McGraw Hill Education Private Limited ,2009

3. Jean Lemaitre, Rodrigue Desmorat "Engineering damage mechanics: ductile, creep, fatigue and brittle failures " Springer, New York, 2005.

4. Yung-Li Lee, Jwo Pan, Richard Hathaway, Mark Barkey "Fatigue Testing and Analysis. Theory and Practice" Butterworth-Heinemann, 2004.

REFERENCE BOOKS:

1 Kare Hellan, 'Introduction to Fracture Mechanics', McGraw Hill, Singapore, 1985

2. Knott, J.F., "Fundamentals of Fracture Mechanics," - Buterworth & Co., Ltd., London, 1983.

3. Sih C.G., "Mechanics of fracture." Vol - I, Sijthoff and w Noordhoff International Publishing Co., Netherlands, 1989.

WEB RESOURCES:

1.Fatigue and fracture mechanism: https://archive.nptel.ac.in/courses/113/105/113105106/

IMENTAL STRESS	ANAL	YS	SIS						
Course Type:	Ι	_		T		P		C	
Theory	3	•		0		0		3	
of strain gauges used									
sticity and methods fo	r stress	an	alv	rsis					
T techniques	1 50055	an	ary	515.					
or teeninques.									
NTS									9
vsical Principle of strai	in gaug	es,	Pr	inci	ple	s of	me	asure	ements,
rements. Extensomete	ers and	tl	hei	r u	ses	, A	dva	intag	es and
CITY									9
- Retartation plates - p	plane po	olaı	risc	cope) - (calib	rati	ion o	f photo
es.									
									9
ight – photo elastic eff	fects, st	res	s c	ptic	: la	w, Iı	nter	preta	ation of
mensional photo elasti	icity.								
MOIRE METHODS									9
n factor for photo elast	ic coati	ng	- N	Ioir	e te	echn	iqu	es, A	nalysis
		U					•		•
									9
vity - Performance o	f strain	g	au	ge s	syst	tem	-]	Гетр	erature
ion-Wheatstone bridge	e	υ			5			1	
	-			Т	' O '	ΓΑΤ	: 45	5 PE	RIODS
rse, the student will be a	able to			_	0.			<u> </u>	
ents in loaded compon	ents.								
n gauges and photo ela	astic tec	hn	iqu	les o	of n	neasi	ure	ment	
dimensional problems	s of st	res	s-s	traii	n	analy	ysis	esp	pecially
us loading condition b	y using	ga	ug	e ros	sett	te me	etho	od.	
	olid and	c	om	posi	ite	mate	eria	ls by	y using
d size of defect in so				1					
d size of defect in so									
	IMENTAL STRESS Course Type: Theory of strain gauges used. sticity and methods for of strain gauges used. sticity and methods for of techniques. VTS 'sical Principle of strate ements. Extensometer CITY - Retartation plates - plate 's. ight – photo elastic effect mensional photo elastic MOIRE METHODS n factor for photo elastic vity - Performance or ion-Wheatstone bridge se, the student will be a ents in loaded comport n gauges and photo elast us loading condition b	IMENTAL STRESS ANAL Course Type: I Theory 3 of strain gauges used. 3 sticity and methods for stress 3 OT techniques. 3 VTS 7 'sical Principle of strain gauge 3 ements. Extensometers and 3 CITY - Retartation plates - plane points. ight – photo elastic effects, st 5 ight – photo elastic effects, st 5 ight – photo elastic effects. 5 of factor for photo elastic coatin 5 vity - Performance of strain 5 se, the student will be able to 5 ents in loaded components. 6 n gauges and photo elastic tect 5 us loading condition by using 5	IMENTAL STRESS ANALYS Course Type: L Theory 3 of strain gauges used. sticity and methods for stress an OT techniques. VTS 'sical Principle of strain gauges, ements. Extensometers and the components. CITY - Retartation plates - plane polaries. ight – photo elastic effects, stress mensional photo elasticity. MOIRE METHODS n factor for photo elastic coating vity - Performance of strain g ion-Wheatstone bridge se, the student will be able to ents in loaded components. n gauges and photo elastic techn limensional problems of stress	IMENTAL STRESS ANALYSIS Course Type: L Theory 3 of strain gauges used. sticity and methods for stress analy OT techniques. VTS 'sical Principle of strain gauges, Pr ements. Extensometers and thei CITY - Retartation plates - plane polarise 'si. ight – photo elastic effects, stress of mensional photo elastic coating - N vity - Performance of strain gauge ion-Wheatstone bridge se, the student will be able to ents in loaded components. n gauges and photo elastic technique imensional problems of stress-s	IMENTAL STRESS ANALYSIS Course Type: L T Theory 3 0 of strain gauges used. sticity and methods for stress analysis. O of strain gauges used. sticity and methods for stress analysis. O VTS	IMENTAL STRESS ANALYSIS Course Type: L T Theory 3 0 of strain gauges used. sticity and methods for stress analysis. of sticity and methods for stress analysis. T techniques. VTS viscal Principle of strain gauges, Principle ements. Extensometers and their uses CITY - Retartation plates - plane polariscope - or strain gauge system of factor for photo elastic effects, stress optic la mensional photo elastic coating - Moire to the factor for photo elastic coating - Moire to the factor for photo elastic coating - Moire to the factor for photo elastic coating - Moire to the factor for photo elastic technique system TOT se, the student will be able to ents in loaded components. n gauges and photo elastic techniques of n limensional problems of stress-strain stress of stress-strain stress of stress-strain stress	IMENTAL STRESS ANALYSIS Course Type: I T P Theory 3 0 0 of strain gauges used. sticity and methods for stress analysis. 0 0 of strain gauges used. sticity and methods for stress analysis. 0 0 T techniques.	IMENTAL STRESS ANALYSIS Course Type: I T P Theory 3 0 0 istrain gauges used. sticity and methods for stress analysis. OT 0 of strain gauges used. sticity and methods for stress analysis. OT techniques. ITS	IMENTAL STRESS ANALYSIS Course Type: I T P C Theory I T P C Theory 3 0 0 3 of strain gauges used. sticity and methods for stress analysis. OT techniques. TTS riscal Principle of strain gauges, Principles of measure ements. Extensometers and their uses, Advantag CITY - - - Retartation plates - plane polariscope - calibration or is. - ight – photo elastic effects, stress optic law, Interpreta mensional photo elastic coating - Moire techniques, A vity - Performance of strain gauge system - Tempion-Wheatstone bridge TOTAL: 45 PEI se, the student will be able to ents in loaded components. n gauges and photo elastic techniques of measurement limensional problems of stress-strain analysis espuse

	DO1	DOO	DO2		DOS	DOC	DO7		DOO	PO	PO	PO	PSO	PSO	PSO
	POI	PO2	P03	P04	P05	PO6	P07	PU8	P09	10	11	12	1	2	3
CO1	3	3	3	2	-	-	-	-	-	-	-	-	2	-	-
CO2	3	3	3	2	-	1	-	1	1	1	1	2	1	-	
CO3	3	3	2	2	2	-	1	-	-	-	1	-	2	1	1
CO4	3	3	2	2	2	1	1	-	1	-	-	1	2	-	1
CO5	3	3	3	2	2	1	1	-	-	1	1	1	2	1	1
			1- low	2 - me	dium	3 - hig	h '-' r	n corr	elation						

TEXT BOOKS:

1. Srinath, L.S., Raghava, M.R., Lingaiah, K., Garagesha, G., Pant B., and Ramachandra, K., "Experimental Stress Analysis", Tata McGraw-Hill, New Delhi, 2016.

2. Sadhu singh "Experimental stress analysis" Khanna Publishers 2017.

3. Pollock A.A., "Acoustic Emission in Acoustics and Vibration Progress", Ed. Stephens R.W.B., Chapman and Hall, 2016.

REFERENCE BOOKS:

1. Dally, J.W., and Riley, W.F., "Experimental Stress Analysis", McGraw-Hill Inc., NewYork, IV edition 2005,

2. Hetyenyi, M., "Hand book of Experimental Stress Analysis", John Wiley and Sons Inc., New York, 2014.

3. U. C. Jindal "Experimental Stress Analysis" Pearson Education, 2014.

4. Karthik Selva Kumar Karuppasamy, Balaji P.S "Applications and Techniques for Experimental Stress Analysis" Engineering Science Reference, 2019.

WEB RESOURCES:

1.Experimental stress analysis: https://archive.nptel.ac.in/courses/112/106/112106068/

AE606203- AEROSPACE MATERIALS													
Course Cotecomy Vertical 2	L	Т	Р	C									
Course Category: Vertical 2	Course Type: Theory	3	0	0	3								
COURSE OBJECTIVES:													
• Different materials with their p													
• Different materials with their m	nechanical behavior												
• Various Heat Treatment proces	ses of aircraft metals and alloys	8											
Applications of Aluminum alloys and Composites													
Selection of Aerospace Materials													

UNIT 1: MATERIAL REQUIREMENTS FOR AEROSPACE STRUCTURES AND ENGINES

Introduction, Fixed-wing aircraft structures - Helicopter structures - Space shuttle structures - Materials used in jet engines.

UNIT 2: MECHANICAL BEHAVIOR OF ENGINEERING MATERIALS

Linear and non-linear elastic properties, Mechanism of elastic and inelastic action. Yielding, strain hardening, true stress, true strain, Failure of materials – fracture, Fatigue, creep - Bauchinger's Effect, Notch Effect, Testing and flaw detection of materials and components.

UNIT 3: HEAT TREATMENT OF ALLOYS AND CORROSION

Introduction to heat treatment process, Heat treatment of carbon steel - Heat treatment of - aluminium alloys, magnesium alloys - Heat treatment of titanium alloys - Classification and Effect of corrosion Aircraft, Corrosion - Protection, Resistant materials.

UNIT 4: ALUMINUM ALLOYS AND COMPOSITES

Introduction - Physical Metallurgy - Cast Aluminium Alloys and Wrought Aluminium Alloys - Aerospace Applications – Plastics and Rubber - Introduction to FRP, Glass and Carbon Composites - Fibers and Resins Characteristics and applications - Failure theories for isotropic and anisotropic materials.

UNIT 5 SELECTION OF MATERIALS FOR AIRCRAFT AND ROCKETS

Classification of aircraft materials - Materials used for aircraft components - Application of Composite materials - Super alloys - Emerging trends in Aerospace materials, Introduction to smart materials, light weight material for MAV/UAV.

TOTAL: 45 PERIODS

9

9

9

9

9

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1: Formulate and perform classical solutions of aeroelastic problems.

CO2: Calculate divergence of a lifting surface in the aerospace vehicles.

CO3: Formulate aeroelastic equations of motion and use them to derive fundamental relations for aeroelastic analysis.

CO4: Analyze the static aeroelastic instabilities such as divergence, control surface reversal and flutter

CO5: Analyze the aeroelastic problems in civil and mechanical engineering.

CO'S PO'S&PSO'S MAPPING PO PO PO PSO PSO **PSO** PO1 PO2 PO3 PO4 PO5 PO₆ PO7 PO8 **PO9** 12 2 10 11 1 CO1 2 3 2 2 _ CO₂ 3 2 2 2 CO3 2 2 2 3 CO4 2 2 3 CO5 3 _

3

1

_

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Adrian P. Mouritz, "Introduction to aerospace materials" Woodhead Publishing Limited, 2012.

2. Titterton, G., "Aircraft Materials and Processes ", Fifth Edition, Pitman Publishing Co., 1995.

3. Krishnadas Nair, C.G., "Handbook of Aircraft Materials", Interline Publishing, 1993.

4. Balram Gupta, "Aerospace Materials ", Vol. I, Vol. II and Vol. III, S.Chand & Company Ltd., New Delhi -1996.

REFERENCE BOOKS:

1. Brian Cantor, Hazel Assender and Patrick Grant "Series in Materials Science and Engineering Aerospace

Materials", Institute of Physics Publishing Bristol and Philadelphia (IOP) Publishing Ltd

2001.

2. Martin, J.W., "Engineering Materials, Their Properties, and Applications ", Wykedham Publications (London) Ltd., 1987.

WEB RESOURCES:

1.Aerospace materials -

https://mrcet.com/downloads/digital_notes/AE/II%20Year/Aerospace%20Materials%20and%20Composites. pdf

AE606204- ADDITIVE MANUFACTURING													
Course Cotogony, Ventical 2	Course Type:	L	Т	Р	C								
Course Category: Vertical 2	Theory	3	0	0	3								
COURSE OBJECTIVES:													

- To introduce the development of Additive Manufacturing (AM), various business opportunities and applications
- To familiarize various software tools, processes and techniques to create physical objects that satisfy product development / prototyping requirements, using AM.
- To be acquainted with vat polymerization and direct energy deposition processes
- To be familiar with powder bed fusion and material extrusion processes.

• To gain knowledge on applications of binder jetting, material jetting and sheet lamination processes

UNIT 1: INTRODUCTION TO ADDITIVE MANUFACTURING

Overview - Need - Development of Additive Manufacturing (AM) Technology: Rapid Prototyping- Rapid Tooling - Rapid Manufacturing - Additive Manufacturing. AM Process Chain- ASTM/ISO 52900 Classification - Benefits. Applications: Building Printing - Bio Printing - Food Printing- Electronics Printing. Business Opportunities and Future Directions – Case studies: Automobile, Aerospace, Healthcare.

UNIT 2: DESIGN FOR ADDITIVE MANUFACTURING (DFAM)

Concepts and Objectives - AM Unique Capabilities - Part Consolidation – Topology Optimization-Generative design - Lattice Structures - Multi-Material Parts and Graded Materials - Data Processing: CAD Model Preparation - AM File formats: STL-Problems with STL- AMF Design for Part Quality Improvement: Part Orientation - Support Structure - Slicing - Tool Path Generation – Design rules for Extrusion based AM.

UNIT 3: VAT POLYMERIZATION AND DIRECTED ENERGY DEPOSITION

Photo polymerization: Stereolithography Apparatus (SLA)- Materials -Process – top down and bottom up approach - Advantages - Limitations - Applications. Digital Light Processing (DLP) - Process - Advantages -Applications. Continuous Liquid Interface Production (CLIP) Technology. Directed Energy Deposition: Laser Engineered Net Shaping (LENS)- Process - Material Delivery - Materials -Benefits -Applications.

UNIT 4: POWDER BED FUSION AND MATERIAL EXTRUSION

Powder Bed Fusion: Selective Laser Sintering (SLS): Process - Powder Fusion Mechanism - Materials and Application. Selective Laser Melting (SLM), Electron Beam Melting (EBM): Materials - Process - Advantages and Applications. Material Extrusion: Fused Deposition Modeling (FDM)- Process-Materials - Applications and Limitations.

UNIT 5: OTHER ADDITIVE MANUFACTURING PROCESSES

Binder Jetting: Three-Dimensional Printing - Materials - Process - Benefits- Limitations - Applications. Material Jetting: Multijet Modeling- Materials - Process - Benefits - Applications. Sheet Lamination: Laminated Object Manufacturing (LOM)- Basic Principle- Mechanism: Gluing or Adhesive Bonding -Thermal Bonding- Materials-Application and Limitation.

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1: Recognize the development of AM technology and how AM technology propagated into various businesses and developing opportunities..

CO2: Acquire knowledge on process of transforming a concept into the final product in AM technology.

CO3: Elaborate the vat polymerization and direct energy deposition processes and its applications

CO4: Acquire knowledge on process and applications of powder bed fusion and material extrusion.

CO5: Evaluate the advantages, limitations, applications of binder jetting, material jetting and sheet lamination processes.

TOTAL: 45 PERIODS

9

9

9

9

9

CO'S PO'S&PSO'S MAPPING															
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO PO PO PSO PSO PSO														
	101	102	105	104	105	100	107	100	109	10	11	12	1	2	3
CO1 3 3 2 - - - - - 2 -															
CO2	3	3	3	2	-	-	-	-	-	-	-	2	-	-	
CO3	3	2	1	2	-	-	-	-	1	1	1	1	2	2	1
CO4	3	2	1	2	1	1	1	-	-	-	-	1	2	-	1
CO5	3	3	3	2	1	1	1	-	1	1	1	1	2	2	1
		1	l-low,	2 - me	dium, í	3 - higł	n, '-' n	o corre	elation						

TEXT BOOKS:

1. Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Manufacturing", Hanser Gardner Publication, Cincinnati., Ohio, 2011, ISBN :9783446425521.

2. Andreas Gebhardt and Jan-Steffen Hötter "Additive Manufacturing: 3D Printing for Prototyping and Manufacturing", Hanser publications, United States, 2015, ISBN: 978-1- 56990-582-1.

REFERENCE BOOKS:

1. Amit Bandyopadhyay and Susmita Bose, "Additive Manufacturing", 1st Edition, CRC Press., United States, 2015, ISBN

2. Liou, L.W. and Liou, F.W., "Rapid Prototyping and Engineering applications: A tool box for prototype development", CRC Press., United States, 2011, ISBN: 9780849334092.

3. Amit Bandyopadhyay and Susmita Bose, "Additive Manufacturing", 1st Edition, CRC Press.,

United States, 2015, ISBN-13: 978-1482223590.

WEB RESOURCES:

1.Additive manufacturing: https://home.iitk.ac.in/~nsinha/Additive_Manufacturing%20I.pdf

AE606205 - NONDESTRUCTIVE TESTING AND EVALUATION												
Course Cotogony, Vertical 2	Course Type:	L	Т	Р	С							
Course Category: Vertical 2	Theory	3	0	0	3							
COURSE OBJECTIVES:												

- To acquaint the students with the overview of NDT
- To elaborate the concept and procedure for liquid and magnetic penetrant testing and evaluate through practical study
- To introduce the concept and procedure for radiograph testing methods and evaluate through practical study
- To brief the concepts and procedures for Ultrasonic testing methods and their applications

• To impart knowledge in other methods of NDT and electrical method with case study

9

UNIT 1: INTRODUCTION TO NONDESTRUCTIVE TESTING

NDT Versus Mechanical testing - Overview of the Non Destructive Testing Methods for the detection of manufacturing defects as well as material characterisation. Relative merits and limitations, Various physical characteristics of materials and their applications in NDT- Visual inspection - Unaided and aided. **UNIT 2: SURFACE NDE METHODS** 9 Liquid Penetrant Testing - Principles, types and properties of liquid penetrants, developers, advantages and limitations of various methods, Testing Procedure, Interpretation of results. Magnetic Particle Testing-Theory of magnetism, inspection materials Magnetisation methods, Interpretation and evaluation of test indications, Principles and methods of demagnetization, Residual magnetism. UNIT 3: THERMOGRAPHY AND EDDY CURRENT TESTING (ET) 9 Thermography- Principles, Contact and noncontact inspection methods, Techniques for applying liquid crystals, Advantages and limitation - infrared radiation and infrared detectors, Instrumentations and methods, applications. Eddy Current Testing-Generation of eddy currents, Properties of eddy currents, Eddy current sensing elements, Probes, Instrumentation, Types of arrangement, Applications, advantages, Limitations, Interpretation/Evaluation. 9 **UNIT 4: ULTRASONIC TESTING (UT) AND ACOUSTIC EMISSION (AE)** Ultrasonic Testing-Principle, Transducers, transmission and pulse-echo method, straight beam and angle beam, instrumentation, data representation, A/Scan, B-scan, C-scan. Phased Array Ultrasound, Time of Flight Diffraction. Acoustic Emission Technique – Principle, AE parameters, Applications 9 **UNIT 5: RADIOGRAPHY (RT)** Principle, interaction of X-Ray with matter, imaging, film and film less techniques, types and use of filters and screens, geometric factors, Inverse square, law, characteristics of films - graininess, density, speed, contrast, characteristic curves, Penetrameters, Exposure charts, Radiographic equivalence. Fluoroscopy-Xero-Radiography, Computed Radiography, Computed Tomography **TOTAL: 45 PERIODS** COURSE OUTCOMES: At the end of the course, the student will be able to CO1: Discuss the basics of NDT and its industrial standards. CO2: Acquire knowledge on the concept and procedure for liquid and magnetic penetrant testing. CO3: Interpret the given mechanical components to inspect using radiograph testing methods techniques CO4: Apply ultrasonic techniques based on materials and its application.

CO5: Describe the applications of electrical and other NDT methods.

CO'S PO'S&PSO'S MAPPING

	DO1	DOO	DO2		DOS	DOC	DO7		DOO	PO	PO	РО	PSO	PSO	PSO
	POI	PO2	P03	PO4	P05	PO6	PO/	PU8	P09	10	11	12	1	2	3
CO1	1	2	1	-	-	-	-	-	-	-	-	-	2	-	-
CO2	1	3	-	-	3	-	-	-	-	-	-	-	3	1	-
CO3	1	3	1	1	1	-	-	-	-	-	-	-	3	1	-
CO4	1	2	-	2	3	-	-	-	-	-	-	-	2	-	-
CO5	1	1	1	-	-	-	-	-	-	-	-	-	3	1	1

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Baldev Raj, T.Jayakumar, M.Thavasimuthu "Practical Non-Destructive Testing", Narosa Publishing House, 2014.

2. Ravi Prakash, "Non-Destructive Testing Techniques", 1st revised edition, New Age International Publishers, 2010

REFERENCE BOOKS:

1. "Non-destructive Testing Handbook", Vol. 1-10, 3rd Edition, American Society for Non Destructive Testing. 2010. ISBN: 978-1-57117-186-3.

2. Hellier C., "Handbook of Non-destructive Evaluation", 1st edition, McGraw-Hill Professional., United States, 2001. ISBN: 0070281211, 978-0070281219.

3. Paipetis A.S, Matikas T. E., and Aggelis D. G., "Emerging Technologies in Non- Destructive Testing",1st edition, CRC Press., United States, 2012. ISBN :9780415621311.

4. Ravi Prakash, "Non-destructive Testing Techniques", 1st Edition, New Age Science., India, 2009. ISBN: 1906574065, 978-1906574062.

5. Charles, J. Hellier," Handbook of Nondestructive evaluation", McGraw Hill, New York 2001.

6. Paul E Mix, "Introduction to Non-destructive testing: a training guide", Wiley, 2nd Edition New Jersey, 2005

WEB RESOURCES:

1. Non Destructive Testing: https://web.itu.edu.tr/~arana/ndt.pdf

AE606206 - AEROSPACE	MANUFACTURI	NG TE	CHNO	LOGY		
Course Category: Vertical 2	Course Type:	L	T	P	C	
COURSE OBJECTIVES:	Theory	3	0	0	3	
• To make the student aware of various produ	uction technologies	generall	v invol	ved in a	air craft	manufac-
furing		generan	y 111 v 01	veu in t		munurue
 Understand the Concepts of welding and ca 	esting Technology					
Understand the machining operations	isting reenhology.					
Understand the unconventional machining						
Understand the Density of motifs and Sha	processes.					
• Understand the Forming of metals and She	et metal.	с с г				
• Understand the operations aircraft metals h	eat treatment and su	irface fii	nishing			
UNIT 1: CASTING AND WELDING						9
General principles of various Casting Processes	s - Sand casting, di	e-castin	g, cent	rifugal	casting,	investment
casting and shell molding types - Principles a	nd equipment used	in arc	weldin	g, gas	welding	, resistance
welding - Laser welding, Electron Beam welding	g - Soldering and br	azing te	chnique	es.		
UNIT 2: MACHINING OPERATIONS						9
General Principles of working of lathe, types of	Tathe and common	ly perfo	rmed o	peratio	n in lath	e - General
Principles of working, types and operation of gri	inding and drilling 1	machine	s - Gen	eral Pri	nciples	of working,
types and operation of Shaper and milling mach	nines - General Prin	ciples o	f worki	ng, typ	es and c	operation of
CNC Machining.						
UNIT 3: UNCONVENTIONAL MACHININ	G PROCESSES					9
Principles of working and Application of Abr	asive Jet Machinin	ng, Ultra	asonic]	Machin	ing - P	rinciples of
working and Application of Electric Discharge I	Machining, Electroc	hemical	Machi	ning, C	hemical	Machining
- Principles of working and Application of LASI	ER Beam Machining	g, Electr	on Bea	m Macl	hining, F	'lasma Arc
Machining						
UNIT 4: FORMING OPERATIONS						9
Forming of metals – Forging of metals, Rolling	g, Extrusion, and Dr	rawing -	Sheet	metal o	operation	ıs-shearing,
punching, super plastic forming, diffusion bond	ing, and different o	peration	s in be	nding -	Rivetin	g types and
techniques used in aerospace industry.						
UNIT 5: HEAT TREATMENT AND SURFA	CE FINISHING					9
Heat treatment process of aluminium alloys, tita	nium alloys, Steels	- Case h	ardenir	ıg, inter	rnal stres	sses and the
stress relieving procedures - Surface Finishing of	operations - protecti	ve treat	ment fo	r alumi	inium al	loys, steels,
anodizing of titanium alloys, organic coating, an	d thermal spray coa	tings				
				TO	ГАL: 45	PERIODS
COURSE OUTCOMES: At the end of the course	se, the student will be	e able to				

CO1. Acquire an overview of electric vehicles and their importance in automotive.

CO2. Discuss the characteristics and the selection of traction motor.

CO3. Comprehend the vehicle-to-vehicle and autonomous technology.

CO4. Explain the networking of various modules in automotive systems, communication protocols and diagnostics of the sub systems.

CO5. Be familiar with on-board diagnostics systems.

CO'S PO'S&PSO'S MAPPING

	DO1	DOO	DO2		DOS	DOC	DO7		DOO	PO	PO	PO	PSO	PSO	PSO
	POI	PO2	PO5	PO4	P05	PU0	PO/	PU8	P09	10	11	12	1	2	3
CO1	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1
CO2	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1
CO3	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1
CO4	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1
CO5	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Keshu S.C, Ganapathy K.K, "Aircraft production technique' Interline Publishing House, Bangalore 1993.

2. Dr. P C Sharma, "A Text book of Production Technology" S. CHAND and company Pvt. Ltd. New Delhi, Eighth edition 2014.

3. R.K. Jain "Production technology" - Khanna Publishers New Delhi 2002.

4. Beddoes, J. and Bibby, M. J., Principles of Metal Manufacturing Processes, ButterworthHeinemann (1999

REFERENCE BOOKS:

1. O.P.Khanna and lal "Production technology" M.Dhanpat rai publications, New Delhi 1997.

2. Campbell, F. C., Manufacturing Technology for Aerospace Structural Materials, Elsevier (2006).

3. Ghosh, A. and Mallik, A. K., Manufacturing Science, Affiliated East West Press (2010).

4. Abbaschian, R., Abbaschian, L., and Reed-Hill, R. E., Physical Metallurgy Principles, 4th ed., Cengage Learning (2008).

WEB RESOURCES:

1. Aircraft Manufacturing Technology: https://www.youtube.com/watch?v=MXZpSLQ0Yfw

AE606207 - A	IRCRAFT STRI	ESS AN	ALYSI	S									
	Course Type:	L	Т	Р	С								
Course Category: Vertical 8	Theory	3	0	0	3	_							
COURSE OBJECTIVES:													
• To study the behavior of various at	ircraft structural c	compone	ents und	er diffe	erent tv	pes of loads							
		· · · · · · · · · ·				F							
• To introduce to practical stress	s analysis, using	g real	structura	al pro	blems	to illustrate the							
fundamental principles and practic	al techniques.					-							
UNIT 1: LOADING IN AIRCRAFTS						9							
Loading Requirements, Loads due to maneuv	ver and gusts, Los	ad distri	bution,	Under	carriage	e and crash cases.							
Loading and analysis of aircraft wing, fuselage, and tail unit. 9													
UNIT 2: STRESSING IN AIRCRAFTS9Stressing The place of stress calculations in aircraft design and production Strength and stiffness													
Stressing, The place of stress calculations in aircraft design and production, Strength and stiffness													
requirements, Factors, Material properties, Composites, Fatigue and fracture.													
UNIT 3: DETAILED STRESSING METHODS9													
Detail Stressing Methods, In-plane and bendi	ing stresses, Secti	on prop	erties, T	orsion	, Rivet	s and bolts, Lugs,							
Yielding and form factors, Composite prop	erties and stress	analysis	s. Use o	of V-N	l diagra	am for sizing the							
aircraft wing, fuselage, and tail unit.													
UNIT 4: BUCKLING IN AIRCRAFTS						9							
Buckling, Formulae for struts, effects of y	ielding, Torsiona	and lo	ocal ins	tability	, Buck	ling of stiffened							
panels in compression and shear, post bucklee	d behavior, Imper	fection	sensitiv	ity.									
UNIT 5: AIRCRAFT STRUCTURAL ANA	ALYSIS					9							
Aircraft Structures, Reinforced shells under	r bending and to	orsion,	Fuselag	e fram	es, Rit	analysis, Finite							
element analysis, Safe life and damage tolera	nt analysis.												
					TOTA	AL: 45 PERIODS							
COURSE OUTCOMES: At the end of the co	ourse, the student	will be a	ble to										
CO1. Analyze the aircraft wing, tail, and fuse	elage												
CO2. Identify the stress and other factors.													
CO3. Understand the various stress methods.													
CO4. Knowledge on buckling in aircraft.													
CO5. Analyse the aircraft structures.													
CO'S PO'S&PSO'S MAPPING													

	DO1	DOO	DO2		DOS	DOC	DO7	DOQ	DOO	PO	РО	PO	PSO	PSO	PSO
	POI	PO2	P03	P04	P05	PU6	PO/	PU8	PO9	10	11	12	1	2	3
CO1	3	2	2	3	3	-	-	-	2	-	-	2	1	1	1
CO2	3	3	3	3	3	-	-	-	2	-	-	3	1	1	1
CO3	2	3	3	2	3	-	-	-	2	-	-	3	1	1	1
CO4	2	3	3	3	2	-	-	-	2	-	-	3	1	1	1
CO5	3	2	3	2	3	-	-	-	2	-	-	3	1	1	1

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Howard D Curtis, 'Fundamentals of Aircraft Structural Analysis', WCB-McGraw Hill, 1997

2. Bruhn. E.H., 'Analysis and Design of Flight Vehicles Structures', Tri-state off-set company, USA, 1985

3. T.H.G. Megson - Introduction to aircraft structural analysis (Butterworth-Heinemann, London, UK) 2013.

REFERENCE BOOKS:

1. Rivello, R.M., Theory and Analysis of Flight Structures, McGraw Hill, 1993.

2. Peery, D.J., and Azar, J.J., Aircraft Structures, 2nd edition, McGraw - Hill, N.Y., 1999

3. D.R.Adams - Aircraft stress analysis (Pitman & Sons, New York, USA) 2007.

4. James-D. Haddon - Introduction to aeronautical engineering (Pitman & Sons, New York, USA) 2006.

WEB RESOURCES:

1. Aircraft Stress Analysis: https://www.stressebook.com/stress-analysis-course/

AE606208- NANO MAT	ERIALS AND AERO) APPI	JCATI	ONS						
Course Category: Vertical 2	Course Type:	L	Т	Р	C					
Course Category: Vertical 2	Theory	3	0	0	3	_				
COURSE OBJECTIVES:				•						
• To impart knowledge of the hydraulic and pneumatic systems components										
• To study about synthesis of nano materi	als and nano structure	e								
• To impart knowledge about nano comp	osites and its applicati	on								
UNIT 1: INTRODUCTION TO NANO TECH	HNOLOGY					9				
General definition and size effects-imp	ortant nano struct	ured n	naterials	and	nano	particles-				
importance of nano materials- Size effect	on thermal, electrica	al, elec	tronic,	mecha	nical,	optical and				
magnetic properties of nanomaterials-	surface area - b	and g	ap en	ergy	and a	applications.				
Photochemistry and Electrochemistry of	nanomaterials –Ionic	e prope	erties o	of nan	omater	ials- Nano				
catalysis.										
UNIT 2: SYNTHESIS OF NANOMATERIA	LS					9				
Bottom up and Top-down approach for obtaining	ng nano materials - Pr	recipitat	ion met	hods –	sol gel	technique -				
high energy ball milling, CVD and PVD meth	nods, gas phase conde	ensation	, magn	etron s	putterir	ng and laser				
deposition methods – laser ablation, sputtering.										
UNIT 3: NANOSTRUCTURES						9				
Zero-, One-, Two- and Three- dimensional stru	cture, Size control of	metal N	Janopar	ticles a	nd thei	r properties:				
Optical, Electronic, Magnetic properties; Sur	face plasmon Resona	ance, C	hange	of band	dgap; 4	Application:				
catalysis, electronic devices										
UNIT 4: NANOCOMPOSITES						9				
Metal-Metal nanocomposites, Polymer-Metal	nanocomposites, C	eramic	nanoco	mposite	es: Die	electric and				
CMR based nanocomposites. Nano Semico	onductors: Nanoscale	electro	onic de	vices	includi	ng CMOS,				
Potentiometric sensors etc., MRAM devices, S ₁	pintronic devices inclu	iding sp	oin valve	es.						
UNIT 5: APPLICATIONS OF NANO MAT	ERIALS					9				
Overview of nanomaterials properties and their	r applications, nano p	painting	, nano c	oating,	, nanon	naterials for				
renewable energy, Molecular Electronics a	nd Nanoelectronics	– Nan	obots-	Biolog	gical A	pplications.				
Emerging technologies for environmental	applications- Practic	e of r	nanopart	icles	for en	vironmental				
remediation and water treatment.										
				ТОТ	AL: 45	PERIODS				
COURSE OUTCOMES: At the end of the cour	rse, the student will be	able to								
CO1: Analysis the basic properties such as stru	ctural, physical, chem	ical pro	perties	of nano	materi	als and their				
applications.										

CO2: Acquire knowledge about the different types of nano material synthesis.

CO3: Demonstrate the fundamental understanding of the operation of engine auxiliary systems.

CO4: Develop a deeper knowledge about nano structures.

CO5: Develop a deeper knowledge in the application of nanomaterials in different fields.

CO'S PO'S&PSO'S MAPPING

	DO1		DOO	PO	PO	РО	PSO	PSO	PSO						
	POI	PO2	PO3	PO4	PO5	PO6	PO/	PO8	P09	10	11	12	1	2	3
CO1	1	-	-	-	-	-	-	-	-	-	-	-	2	1	-
CO2	1	2	2	2	2	-	-	-	-	-	1	-	2	1	-
CO3	1	2	2	2	2	-	-	-	-	-	1	-	2	1	-
CO4	1	2	2	2	2	-	-	-	-	-	1	-	2	1	-
CO5	1	2	2	2	2	-	-	-	-	-	1	-	2	1	-

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Mick Wilson, Kamali Kannangara, Geoff Smith, Michelle Simmom, Burkhard Raguse, "Nano Technology: Basic Science & Engineering Technology", Overseas Press, 2005.

2. G. Cao, "Nanostructures & Nanomaterials: Synthesis, Properties & Applications" Imperial College Press, 2004

3. William A Goddard "Handbook of Nanoscience, Engineering and Technology", 3rd Edition, CRC Taylor and Francis group 2012.

REFERENCE BOOKS:

1. R.H.J.Hannink & A.J.Hill, Nanostructure Control, Wood Head Publishing Ltd., Cambridge, 2006

2. C.N.R.Rao, A.Muller, A.K.Cheetham, The Chemistry of Nanomaterials: Synthesis, Properties and Applications Vol. I & II, 2nd edition, 2005, Wiley VCH Verlag Gibtl & Co

3. Ivor Brodie and Julius J.Muray,'The physics of Micro/Nano - Fabrication', Springer International Edition,2010

4. Carbon Nanotubes: Properties and Applications- Michael J. O'Connell.

WEB RESOURCES:

1. Nano Technology: https://old.amu.ac.in/emp/studym/100016644.pdf

AE606209– AIRCRAF	F HIGH TEMPE	RATUI	RE MA	TERL	ALS	
	Course Type:	L	Т	Р	С	
Course Category: Vertical 2	Theory	3	0	0	3	
COURSE OBJECTIVES:						
• To learn the concepts of damage mech	hanism					
• To acquire knowledge in of component	nts at elevated ten	nperatur	es			
• To analysis the concept of creep						
• To design material for creep resistanc	e					
• To educate about high temperature m	aterial characteriz	ation				
UNIT 1: CREEP BEHAVIOUR IN HIGH	TEMPERATUR	RE MAT	'ERIA	L		9
Factors influencing functional life of compor	nents at elevated t	emperat	ures, de	efinition	n of cree	ep curve, various
stages of creep, metallurgical factors influence	cing various stage	s, effect	of stres	ss, temp	eratures	s and strain rate.
UNIT 2: DESIGN FOR CREEP RESISTA	NCE					9
Design of transient creep time, hardening, st	rain hardening, e	xpressio	ns of ru	upture l	ife of c	reep, ductile and
brittle materials, Monkman-Grant relationshi	p.					
UNIT 3: FRACTURE AND SUPER ALLO	OYS					9
Various types of fracture, brittle to ductile fr	rom low temperat	ure to hi	igh tem	peratur	e, cleav	age fracture due
to micro void coalescence – diffusion contro	lled void growth;	fracture	maps	for diffe	erent all	loys and oxides -
Iron base, Nickel base and Cobalt base super	alloys, compositi	on contr	ol, soli	d soluti	on stren	igthening,
UNIT 4: OXIDATION AND HOT CORRO	DSION					9
Oxidation, Pilling, Bedworth ratio, kinetic la	aws of oxidation	- defect	structu	ire and	control	of Oxidation by
alloy additions, hot gas corrosion deposit, mo	odified hot gas co	rrosion,	fluxing	mecha	nisms, e	effect of alloying
elements on hot corrosion, interaction of hot	corrosion and cree	ep, meth	ods of	combat	hot cor	rosion.
UNIT 5: HIGH TEMPERATURE MATEI	RIALS CHARA(CTERIZ	ZATIO	N		9
Classification, production and characteristic	es – Methods and	d testing	g – De	termina	tion of	mechanical and
thermal properties of materials at elevated	d temperatures –	Applic	ation o	of these	e mater	rials in Thermal
protection systems of Aerospace vehicles - s	uper alloys – Higl	n temper	ature n	naterial	charact	erization.
					TOTA	L: 45 PERIODS
COURSE OUTCOMES: At the end of the co	ourse, the student	will be al	ole to			
CO1: Apply the concepts of damage mechan	ism.					
CO2: Describe the knowledge of components	s at elevated temp	eratures				
CO3: Design materials to able to have creep	resistance					
CO4: Knowledge about oxidation and corros	ion					

CO5: Illustrate the high temperature material characterization

CO'S PO'S&PSO'S MAPPING

	DO1		DOO	DOO	PO	PO	PO	PSO	PSO	PSO					
	POI	PO2	PO3	PO4	PO5	PO6	PO/	PO8	100 109	10	11	12	1	2	3
CO1	3	-	-	-	-	-	-	-	-	-	-	-	1	-	-
CO2	1	3	2	2	2	-	-	-	-	-	1	-	1	-	-
CO3	1	2	2	2	2	-	-	-	-	-	1	-	1	-	-
CO4	1	2	2	2	2	-	-	-	-	-	1	-	1	-	-
CO5	1	2	2	2	2	-	-	-	-	-	1	-	1	-	-

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Raj. R., "Flow and Fracture at Elevated Temperatures", American Society for Metals, USA, 1985.

2. Hertzberg R.W., "Deformation and Fracture Mechanics of Engineering materials", 4th Edition, John Wiley, USA, 1996.

3. Courtney T .H, "Mechanical Behaviour of Materials", McGraw-Hill, USA, 1990.

REFERENCE BOOKS:

1. Boyle J.T, Spencer J, "Stress Analysis for Creep", Butterworths, UK, 1983.

2. Bressers.J., "Creep and Fatigue in High Temperature Alloys", Applied Science, 1981.

3. McLean D., "Directionally Solidified Materials for High Temperature Service", The Metals Society, USA, 1985

WEB RESOURCES:

1. Aircraft High Temperature Material: https://www.youtube.com/watch?v=mwyZ-U6x0h0

Vertical-3

ACIONICS AND DRONE TECHNOLOGY

CURRICULUM

S.No	Course Code	Course Title	Classification		L	Т	Р	С
1	AE606301	Avionics	PE	Theory	3	0	0	3
2	AE606302	Design of UAV Systems (NPTEL)	PE	Theory	3	0	0	3
3	AE606303	Aerodynamics of Drones	PE	Theory	3	0	0	3
4	AE606304	Control Engineering	PE	Theory	3	0	0	3
5	AE606305	Introduction to PLC(NPTEL)	PE	Theory	3	0	0	3
6	AE606306	Drone Technologies	PE	Theory	3	0	0	3
7	AE606307	Geographical Information Systems (NPTEL)	PE	Theory	3	0	0	3
8	AE606308	Guidance and Control	PE	Theory	3	0	0	3
9	AE606309	Navigation and Communication Systems	PE	Theory	3	0	0	3

AE60	6301 AVIONICS					
Course Cotogowy Vortical 3	Course Type:	L	Т	Р	С	
Course Category: Vertical 5	Theory	3	0	0	3	
COURSE OBJECTIVES:				1		
• To introduce the basics of avionics and it	s needs for civil and n	nilitary a	ircrafts			
• To impart knowledge about the avionic a	rchitecture and variou	s avionic	s data	buses		
• To gain more knowledge on various avio	onics subsystems					
• To analysis the concepts of navigation sy	vstems.					
• To gain knowledge on auto pilot system						
UNIT I INTRODUCTION TO AVIONICS						9
Need for avionics in civil and military aircra	aft and space system	ıs – inte	egrated	avioni	cs and	l weapon
systems – Typical avionics subsystems, desi	gn, technologies – 1	introduct	ion to	digital	comp	outer and
memories						
UNIT II DIGITAL AVIONICS ARCHITECT	TURE					9
Avionics system architecture – data buses – MIL	L-STD-1553B – ARIN	C – 420	– ARI	NC - 62	9.	
UNIT III FLIGHT DECKS AND COCKPITS	5					9
Control and display technologies: CRT, LED	D, LCD, EL and pla	sma pan	el – 7	Fouch s	creen	- Direct
voice input (DVI) – Civil and Military Cockpits:	MFDS, HUD, MFK,	HOTAS	•			
UNIT IV INTRODUCTION TO NAVIGATIO	ON SYSTEMS					9
Radio navigation - ADF, DME, VOR, LOR	AN, DECCA, OMEO	GA, ILS	, MLS	– Iner	tial N	avigation
Systems (INS) – Inertial sensors, INS block diag	gram – Satellite naviga	tion syst	ems – (GPS		
UNIT V AIR DATA SYSTEMS AND AUTO	PILOT					9
Air data quantities - Altitude, Air speed, Ve	ertical speed, Mach N	Jumber,	Total	air tem	peratu	re, Mach
warning, Altitude warning – Auto pilot – Basic p	principles, Longitudina	al and lat	eral au	to pilot.		
			r	ΓΟΤΑΙ	.: 45 P	PERIODS
COURSE OUTCOMES: At the end of the cours	se, the student will be a	ble to				
CO1. Built Digital avionics architecture.						
CO2. Design Navigation system						
CO3. Integrate avionics systems using data buse	8					
CO4. Analyze the performance of various cockp	it display technologies	5				
CO5. Design autopilot for small aircrafts using N	MATLAB.					
CO'S PO'S&PSO'S MAPPING						

			DOO	DOO	PO	PO	PO	PSO	PSO	PSO					
	POI	PO2	P03	P04	P05	P06	PO/	P08	P09	10	11	12	1	2	3
CO1	3	2	2	-	-	1	-	-	-	2	-	-	-	1	1
CO2	3	2	1	-	-	1	-	-	-	2	-	-	-	1	1
CO3	3	2	2	-	-	1	-	-	-	2	-	-	-	2	1
CO4	3	2	2	-	-	1	-	-	-	2	-	-	-	1	1
CO5	3	2	2	-	-	1	-	-	-	2	-	-	-	2	1

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

- 1. Spitzer, C.R. "Digital Avionics Systems", The Blackburn Press; 2nd edition 2001
- 2. Spitzer. C.R. "The Avionics Hand Book", CRC Press, 3rd edition 2017
- 3. Collinson.R.P.G. "Introduction to Avionics", Springer 3rd edition 2011

REFERENCE BOOKS:

- 1. Albert Helfrick.D., "Principles of Avionics", Avionics Communications Inc., 2004
- 2. Middleton, D.H., Ed., "Avionics systems, Longman Scientific and Technical", Longman Group UK Ltd., England, 1989.
- 3. Pallet.E.H.J., "Aircraft Instruments and Integrated Systems", Pearsons, Indian edition 2011.

WEB RESOURCES:

1.Https://Www.Aviationtoday.Com/

2. https://aea.net/AvionicsNews/

AE606302 DESIGN OF UAV SYSTEMS								
Course Category: Vartical 3	Course Type:	L	Т	Р	C			
Course Category. Vertical 5	Theory	3	0	0	3			
COURSE OBJECTIVES:								
• To expose students to concepts needed in modelling and analysing an unmanned system.								

- To expose students to the design and development of UAV.
- To expose students to the type of payloads used in UAV.
- To study path planning

•	To ana	lysis th	ne avior	nics ha	rdware	used ir	n the U	AV							
UNIT	I INTR	RODUG	CTION	I TO U	AV										9
History	of UA	AV –cl	assific	ation –	Introd	luction	to Un	manne	d Aircr	aft Sy	stems	mod	els and	l protot	ypes –
System	Comp	osition	-applic	ations											
UNIT	II THE	E DESI	GN O	F UAV	SYST	EMS									9
Introdu	ction	to Des	sign a	nd Sel	ection	of the	e Syst	em- A	erodyn	amics	and	Airfr	ame C	onfigur	ations-
Charac	teristic	s of Ai	rcraft 7	Гуреs-	Design	Standa	ards an	d Regu	ılatory	Aspec	ts-UK	, USA	and E	urope-	Design
for Stea	althco	ontrol s	urfaces	-specif	ication	s.									
UNIT	III AV	IONIC	CS HAI	RDWA	RE										9
Autopi	lot –	AGL-	pressu	re sen	sors-se	ervos-a	ccelero	meter	-gyros	s-actu	ators-	powe	er sup	ply-pro	cessor,
integrat	tion, in	stallatio	on, con	figurat	ion, an	d testin	g								
UNIT	IV CO	MMU	NICAT	FION I	PAYLO	DADS	AND C	CONTI	ROLS						9
Payload	ls-Tele	metry-	trackin	g-Aeria	al phot	ograph	y-cont	rols-PI	D feed	back-	radio	contro	l frequ	ency r	ange –
modem	s-mem	ory sys	stem-si	mulatio	on-grou	nd test	-analys	sis-trou	ble sho	oting					
UNIT	V THE	C DEVI	ELOPI	MENT	OF U	AV SY	STEM	[S							9
Waypo	ints na	vigatio	n-grou	nd con	trol so	ftware-	System	m Grou	und Te	sting-	System	m In-f	light T	esting-	Future
Prospec	ets and	Challe	nges-C	ase Stu	idies –	Mini a	nd Mic	ro UAV	Vs.						
-												TO	DTAL:	45 PEI	RIODS
COUR	SE OU	TCON	AES: A	t the er	nd of th	e cours	e, the s	tudent	will be	able to)				
CO1. D	Design V	UAV s	ystem												
CO2. P	repare	prelim	inary d	esign r	equiren	nents fo	or an ui	nmanne	ed aeria	ıl vehi	cle.				
CO3. Id	dentify	differe	ent hard	lware fo	or UAV	1									
CO4. P	erform	system	n testin	g for u	nmanne	ed aeria	al vehic	eles.							
CO5. D	esign 1	nicro a	erial ve	ehicle s	ystems	by con	nsiderir	ng prac	tical lir	nitatic	ons				
CO'S I	°O'S&	PSO'S	MAPI	PING											
	DO1	DOJ	DO3		DO5	DOG	DO7	DOS	DOO	РО	PO	PO	PSO	PSO	PSO
	FUI	FO2	PO5	F04	FUS	FU0	FO7	FU8	P09	10	11	12	1	2	3
CO1	3	2	2	-	_	_	_	-	-	1	-	-	-	-	-
CO2	3	2	2	-	-	-	-	-	-	1	-	-	-	1	1
CO3	3	2	2	-	-	-	-	-	-	1	-	-	-	2	2
CO4	3	2	2	-	-	-	-	-	-	1	-	-	-	2	-
CO5	3	2	2	-	2	-	-	-	-	1	-	-	-	1	1
	l	<u> </u>	1- low,	2 - me	dium,	3 - hig	h, '-' n	lo corr	elation	L	1	1	1	<u>I</u>	L]
TEXT	BOOK	S:													

1. Paul G Fahlstrom,	Thomas J Gleason,	"Introduction to U	JAV Systems",	UAV Systems	Wiley; 4th edition
2012					

2.Reg Austin "Unmanned Aircraft Systems UAV design, development and deployment", 1st edition 2011

REFERENCE BOOKS:

1.Dr. Armand J. Chaput, "Design of Unmanned Air Vehicle Systems", Lockheed Martin Aeronautics Company, 2001

2.Kimon P. Valavanis, "Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy", Springer, 1st edition 2010

3.Robert C. Nelson, Flight Stability and Automatic Control, McGraw-Hill, 2nd edition 2017

WEB RESOURCES:

1. Https://Erau.Libguides.Com/Uas/Websites

2. Https://Www.Sciencedirect.Com/Topics/Engineering/Unmanned-Aerial-Vehicle

AE606303 AERO	DYNAMICS OF DI	RONES				
Course Category: Vertical 3	Course Type:	L	Т	P	С	
Course Category. Vertical 5	0	3				
COURSE OBJECTIVES:						
• To introduce students to the basic concep	ts of payloads in UA	V.				
• To understand the various sensor system	of an UAV					
• To introduce with the concepts of data al	gorithms and archited	ctures.				
• To introduce the concepts of artificial net	aral networks.					
• To expose students to the concept of fuzz	zy logic					
UNIT I PAYLOAD FOR UAV						9
Introduction - Types - Non-dispensable Pay	loads - Electro-opti	ic Payload	l Syste	ems - I	Electro	-optic
Systems Integration - Radar Imaging Paylor	ads - Other Non-d	ispensable	Paylo	ads -	Disper	nsable
Payloads - Payload Development.						
UNIT II SENSORS						9
Data fusion applications to multiple sensor	systems - Selection	of senso	rs - B	enefits	of mu	ultiple
sensor systems - Influence of wavelength	on atmospheric att	tenuation	- Fog	charac	terizat	ion -
Effects of operating frequency on MMW sense	sor performance - A	Absorption	of MN	MW en	ergy ir	n rain

104

and fog - Backscatter of MMW energy from rain - Effects of operating wavelength on IR sensor
performance - Visibility metrics - Atmospheric and sensor system computer simulation models
UNIT III DATA FUSION ALGORITHMS AND ARCHITECTURES 9
Definition of data fusion - Level 1 processing - Detection, classification, and identification algorithms
for data fusion - State estimation and tracking algorithms for data fusion - Level 2, 3, and 4
processing - Data fusion processor functions - Definition of an architecture - Data fusion
architectures - Sensor-level fusion - Central-level fusion - Hybrid fusion
UNIT IV ARTIFICIAL NEURAL NETWORKS 9
Applications of artificial neural networks - Adaptive linear combiner - Linear classifiers - Capacity of
linear classifiers - Nonlinear classifiers - Madaline – Feed forward network - Capacity of nonlinear
classifiers - Supervised and unsupervised learning - Supervised learning rules - Voting Logic Fusion
UNIT V FUZZY LOGIC AND FUZZY NEURAL NETWORKS 9
Conditions under which fuzzy logic provides an appropriate solution - Illustration of fuzzy logic in
an automobile antilock braking system - Basic elements of a fuzzy system - Fuzzy logic processing
- Fuzzy centroid calculation
COURSE OUTCOMES: At the end of the course, the students will be able to
CO1. Calculate the payloads in UAV
CO2. Explain the concents concer systems
CO2. Explain the concepts sensor systems
CO3. Predict the data fusion algorithms and architectures.
CO4. Learn the basics neural network systems
CO5. Design various network schemes
CO'S PO'S&PSO'S MAPPING
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO PO PO PSO PSO PSO
CO1 3 3 2 - - - - 2 - - 2 2
CO2 3 2 2 - - - - 2 - - 2 2
CO3 3 2 2 - - - - 2 - - 2 2
CO4 2 2 2 2 2 - - - 2 - - 2 2
CO5 2 2 2 2 2 - - - 2 - - 2 2
1- low, 2 - medium, 3 - high, '-' no correlation
TEXT BOOKS:
1. Reg Austin "Unmanned Aircraft Systems UAV design, development and deployment", 1 st edition 2011

105

2.David L. Hall, Sonya A. H. McMullen "Mathematical Techniques in Multi-sensor Data Fusion", by Artech, 2004

3.Martin Liggins II David Hall, James "Handbook of Multisensor Data Fusion: Theory and Practice", Second Edition (Electrical Engineering & Applied Signal Processing Series), 2008.

REFERENCE BOOKS:

1.Lawrence A. Klein, "Sensor and Data Fusion: A Tool for Information Assessment and Decision Making", Second Edition, SPIE Press, 2013

2. Jitendra R. Raol, "Multi-Sensor Data Fusion with MATLAB", CRC Press, 2010

WEB RESOURCES:

1.Https://Www.Youtube.Com/Watch?V=Ejfcnqs6hd4

2. https://www.wired.com/2017/05/the-physics-of-drones/

AE606304 CONTROL ENGINEERING										
Commo Cotogony Ventical 2	Course Type:		L	Т	P	С				
Course Category: Vertical 5	Theory		3	0	0	3				
COURSE OBJECTIVES:				•						
• To introduce the mathematical modeling of	systems, open loop an	nd o	closed	loop s	ystems a	nd ana	alyses			
in time domain and frequency domain.										
• To impart the knowledge on the concept of stability and various methods to analyze stability in both										
time and frequency domain.										
• To introduce sampled data control system.										
• To explain the concept of stability										
• To analysis about digital controllers										
UNIT I INTRODUCTION							9			
Historical review, Simple pneumatic, hydraulic an	d thermal systems, Ser	ries	s and	parallel	system	Anal	ogies,			
mechanical and electrical components, Development of flight control systems										
UNIT II OPEN AND CLOSED LOOP SYSTEMS										
Feedback control systems - Control system components - Block diagram representation of control systems,										
Reduction of block diagrams, Signal flow graphs, Output to input ratios.										
UNIT III CHARACTERISTIC EQUATION AN	ND FUNCTIONS						9			
Laplace transformation. Response of systems to	different inputs viz.	Ste	p im	oulse, n	ulse, pa	raboli	c and			

106

sinusoidal inputs, Time response of first and second order systems, steady state errors and error constants of unity feedback circuit.

UNIT IV CONCEPT OF STABILITY

Necessary and sufficient conditions, Routh-Hurwitz criteria of stability, Root locus and Bode techniques, Concept and construction, frequency response.

UNIT V SAMPLED DATA SYSTEMS

Z-Transforms Introduction to digital control system, Digital Controllers and Digital PID controllers

TOTAL: 45 PERIODS

9

9

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1. Apply mathematical knowledge to model the systems and analyse the frequency domain.

CO2.Check the stability of the both time and frequency domain.

CO3.Solve simple pneumatic, hydraulic and thermal systems, Mechanical and electrical component analogies-based problems.

CO4. Solve the Block diagram representation of control systems, Reduction of block diagrams, Signal flow graph and problems based on it.

CO5. Explain the digital control system, Digital Controllers and Digital PID Controllers

CO'S PO'S&PSO'S MAPPING

	DO 1	DO2	DO2	DO 4	DOS	DOC	D07	DOO	DOO	PO	PO	PO	PSO	PSO	PSO
	POI	PO2	PO3	PO4	P05	PO6	PO/	P08	PO9	10	11	12	1	2	3
CO1	2	2	2	2	-	-	-	-	-	2	-	-	2	2	2
CO2	2	2	2	2	-	-	-	-	-	2	-	-	2	2	2
CO3	2	2	2	2	-	-	-	-	-	2	-	-	2	2	2
CO4	2	2	2	2	-	-	-	-	-	2	-	-	2	2	2
CO5	2	2	2	2	-	-	-	-	-	2	-	-	2	2	2

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1.Control systems Nagoorkani RBA Publications 3rd edition 2017

2.OGATO, Modern Control Engineering, Pearson Education India; 5th edition (1 January 2015)

REFERENCE BOOKS:

1.Houpis, C.H. and Lamont, G.B. "Digital control Systems", McGraw Hill Book co., New York, U.S.A. 1995.

2.Kuo, B.C. "Automatic control systems", Prentice-Hall of India Pvt. Ltd., New Delhi, 1998

3.Naresh K Sinha, "Control Systems", New Age International Publishers, New Delhi, 1998

WEB RESOURCES:

- 1. <u>Http://Www.Learncontrolsystems.Com/</u>
- 2. Https://Www.Ieeecss.Org/

AE606305 IN	FRODUCTION TO	PLC								
	Course Type:	Course Type: L T P								
Course Category: Vertical 3	NPTEL	3	0	0	3					
COURSE OBJECTIVES:					J					
• Basic PLC terminologies digital principle	s, PLC architecture a	nd operatio	on.							
• Familiarize different programming langua	age of PLC.									
• Develop PLC logic for simple application	• Develop PLC logic for simple applications using ladder logic.									
• Analysis the hardware and software behind	nd PLC and SCADA.									
• Exposures about communication architec	ture of PLC/SCADA									
UNIT I INTRODUCTION TO PLC					9					
Introduction to PLC: Microprocessor, I/O Ports, Isolation, Filters, Drivers, Microcontrollers/DSP,										
PLC/DDC- PLC Construction: What is a PLC, P	LC Memories, PLC I	/O, , PLC 3	Special	I/O, PI	C Types.					
UNIT II PLC INSTRUCTIONS					9					
PLC Basic Instructions: PLC Ladder Language	ge- Function block	Programm	ing- La	dder/F	unction Bloc					
functions- PLC Basic Instructions, Basic Examp	oles (Start Stop Rung	, Entry/Re	set Run	g) - Co	onfiguration of					
Sensors, Switches, Solid State Relays-Interlock e	examples- Timers, Co	unters, Ex	amples.							
UNIT III PLC PROGRAMMING9										
Different types of PLC program, Basic Ladder	r logic, logic functio	ons, PLC 1	nodule	addres	sing, register					
basics, basic relay instructions, Latching Relays	, arithmetic functions	, comparis	son fun	ctions,	data handling					
data move functions, timer-counter instructions,	input-output instruction	ons, sequei	ncer ins	truction	18					
UNIT IV COMMUNICATION OF PLC AND	SCADA				9					
Communication Protocol – Modbus, HART, Pr	ofibus- Communicati	on faciliti	es SCA	DA: -	Hardware an					
software, Remote terminal units, Master Station	and Communication a	architecture	es							
UNIT V CASE STUDIES					9					
Stepper Motor Control- Elevator Control-CNC N	Iachine Control- conv	veyor contr	ol-Inte	rlocking	g Problems					
			T	OTAL:	45 PERIOD					
COURSE OUTCOMES: At the end of the course	e, the student will be a	ble to								
CO1. Know the basic requirement of a PLC input/output devices and architecture

CO2 Ability to apply Basics Instruction Sets used for ladder Logic and Function Block Programming.

CO3. Ability to design PLC Programmes by Applying Timer/Counter and Arithmetic and Logic Instructions Studied for Ladder Logic and Function Block.

CO4. Able to develop a PLC logic for a specific application on real world problem

CO5. Ability to Understand the Concepts of Communication used for PLC/SCADA

CO'S PO'S&PSO'S MAPPING

	DO1	DOJ	DO2		DO5	DOC	DO7		DOO	РО	РО	РО	PSO	PSO	PSO
	POI	PO2	P05	PU4	POS	PU0	P07	PU8	P09	10	11	12	1	2	3
CO1	3	2	2	-	-	-	-	-	-	2	-	-	2	2	2
CO2	3	2	2	-	-	-	-	-	-	2	-	-	2	-	-
CO3	3	2	2	-	2	-	-	-	-	2	-	-	2	2	2
CO4	3	2	2	-	-	-	-	-	-	2	-	-	2	-	-
CO5	3	2	2	-	-	-	-	-	-	2	-	-	2	2	2

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1.Frank Petruzzula, Programmable Logic Controllers, Tata Mc-Graw Hill 5th Edition 2019

2. John W. Webb, Ronald A. Reis, Programmable Logic Controllers Principles and Applications, PHI publication 5th edition 2002

REFERENCE BOOKS:

1. Madhuchannd Mitra and Samerjit Sengupta, Programmable Logic Controllers Industrial Automation an Introduction, Penram International Publishing Pvt. Ltd. 2nd edition 2017

2. J. R. Hackworth and F. D. Hackworth, Programmable Logic Controllers Principles and Applications, Pearson publication 3rd edition 2019

WEB RESOURCES:

Https://Instrumentationtools.Com/Resources-Tab-In-Siemens-Plc/

AE606306 DR	RONE TECHNOLOG	IES				
Course Category: Vertical 3	Course Type:	L	Т	Р	С	
Course Cangory. Vertical 5	THEORY	3	0	0	3	
COURSE OBJECTIVES:			•			<u>.</u>
• To analysis the basics of drone concepts						
• To learn and understand the fundaments	of design, fabrication a	and progra	amming	g of dro	ne	
• To impart the knowledge of an flying and	l operation of drone					
• To know about the various applications of	of drone					
• To analysis the safety risks and guideline	s of fly safely					
UNIT – I INTRODUCTION TO DRONE T	TECHNOLOGY					9
Drone Concept - Vocabulary Terminology- His	tory of drone - Types	of currer	nt gener	ation o	f drone	s based
on their method of propulsion- Drone technology	ology impact on the	business	es- Dro	one bu	siness	through
entrepreneurship- Opportunities/applications for	entrepreneurship and	employat	oility			
UNIT – II DRONE DESIGN, FABRICATI	ON AND PROGRAM	IMING				9
Classifications of the UAV -Overview of the	main drone parts- Te	echnical	characte	eristics	of the	parts -
Function of the component parts -Assembling	a drone- The energy	sources-	Level	of auto	nomy-	Drones
configurations -The methods of programming	drone- Download pro	gram - I	nstall p	rogram	on co	mputer-
Running Programs- Multi rotor stabilization- Fli	ght modes -Wi-Fi com	nection.				
UNIT – III DRONE FLYING AND OPERA	ATION					9
Concept of operation for drone -Flight modes-	Operate a small dron	e in a co	ntrollec	l enviro	onment	- Drone
controls Flight operations -management tool -	-Sensors - Onboard s	torage ca	apacity	- Rem	ovable	storage
devices- Linked mobile devices and applications						
UNIT – IV DRONE COMMERCIAL APP	LICATIONS					9
Choosing a drone based on the application -Dron	nes in the insurance sec	tor- Droi	nes in d	eliverin	ıg mail,	parcels
and other cargo- Drones in agriculture- Drones	in inspection of trans	mission 1	ines an	d powe	r distril	bution -
Drones in filming and panoramic picturing						
UNIT – V FUTURE DRONES AND SAFE	ГҮ					9
The safety risks- Guidelines to fly safely -Spec	rific aviation regulatio	n and sta	ındardiz	ation-	Drone	license-
Miniaturization of drones- Increasing autonomy	of drones -The use of	drones in	swarms	5		
			Т	OTAL	: 45 PE	RIODS
COURSE OUTCOMES: At the end of the cours	e, the student will be al	ole to				
CO1. Know about a various type of drone techno	ology, drone fabricatio	n and pro	gramm	ing		
CO2 Execute the suitable operating procedures f	or functioning a drone					
CO3. Select appropriate sensors and actuators fo	r Drones					

110

CO4. Develop a drone mechanism for specific applications

CO5. Create the programs for various drones

CO'S PO'S&PSO'S MAPPING

1- low, 2 - medium, 3 - high, '-' no correlation

	DO1	DOJ	DO2		DO5	DOG	DO7		DOO	РО	РО	РО	PSO	PSO	PSO
	POI	PO2	PO3	P04	P05	PU0	P07	PU8	P09	10	11	12	1	2	3
CO1	3	2	2	-	-	-	-	-	-	1	-	-	-	-	-
CO2	3	2	2	-	-	-	-	-	-	1	-	-	-	1	1
CO3	3	2	2	-	-	-	-	-	-	1	-	-	-	2	2
CO4	3	2	2	-	-	-	-	-	-	1	-	-	-	2	-
CO5	3	2	2	-	2	-	-	-	-	1	-	-	-	1	1

TEXT BOOKS:

1. Daniel Tal and John Altschuld, "Drone Technology in Architecture, Engineering and Construction: A Strategic Guide to Unmanned Aerial Vehicle Operation and Implementation", 2021 John Wiley & Sons, Inc

2. Terry Kilby and Belinda Kilby, "Make: Getting Started with Drones ", Maker Media, Inc, 2016

REFERENCE BOOKS:

1. John Baichtal, "Building Your Own Drones: A Beginners' Guide to Drones, UAVs, and ROVs", Que Publishing, 2016

2. Zavrsnik, "Drones and Unmanned Aerial Systems: Legal and Social Implications for Security and Surveillance", Springer, 2018.

WEB RESOURCES:

1.https://iitram.ac.in

AF606307 GEOGRAPH	IICAL INFORMATI	ON SVST	FMS			
	Course Type:		T	Р	С	
Course Category: Vertical 3	NPTEL		0	0	3	
COURSE OBJECTIVES:						
 To impart the knowledge on basic component of the knowledge on basic component of the fundaments of the fundaments of the fundament of the knowledge on data input and the fundament of the knowledge on data input and the fundament of the knowledge on data input and the fundament and its fundament of the fundament of the	nents, data preparation of spatial data models nd topology output	and impl	ementa	tion of	Geogra	aphical
UNIT I FUNDAMENTALS OF GIS						9
Introduction to GIS - Basic spatial concepts	- Coordinate System	s - GIS	and In	formati	on Sys	stems –
Definitions – History of GIS - Components of	of a GIS – Hardware,	Softwar	e, Data	, Peop	le, Me	thods –
Proprietary and open source Software - Types of	of data – Spatial, Attri	bute data	- types	of attri	butes –	- scales/
levels of measurements	-		•••			
UNIT II SPATIAL DATA MODELS						9
Database Structures – Relational, Object Oriente	d – Entities – ER diag	ram - data	u model	s - cond	ceptual.	logical
and physical models - spatial data models – Rasi	ter Data Structures – R	aster Dat	a Comr	ression	- Veci	tor Data
Structures - Raster vs Vector Models- TIN and G	RID data models					
UNIT III DATA INPUT AND TOPOLOGY						9
Seenner Dester Date Input Dester Date File I	Formata Gao referen	aina Va	otor D	to Innu		ritizor
Scamer - Kaster Data Input - Kaster Data File I	Turnels – Geo reference	ung – ve		ua mpi	11 – Diş	gitizer –
Datum Projection and reprojection -Coordinate	Transformation – To	pology -	Adjace	ncy, co	nnectiv	ity and
containment – Topological Consistency – Non	topological file forma	its - Attri	bute D	ata link	ing –	Linking
External Databases – GPS Data Integration						
UNIT IV DATA QUALITY AND STANDAR	RDS					9
Data quality - Basic aspects - completeness, le	ogical consistency, po	sitional a	ccurac	y, temp	oral ac	ccuracy,
thematic accuracy and lineage - Metadata -	GIS Standards –Int	eroperabi	lity -	OGC -	Spati	al Data

UNIT V DATA MANAGEMENT AND OUTPUT

Infrastructure

Import/Export – Data Management functions- Raster to Vector and Vector to Raster Conversion - Data Output - Map Compilation – Chart/Graphs – Multimedia – Enterprise Vs. Desktop GIS-distributed GIS.

TOTAL: 45 PERIODS

9

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1. Basic idea about the fundamentals of GIS.

CO2 Understand the types of data models.

CO3. Get knowledge about data input and topology

CO4. Gain knowledge on data quality and standards

CO5. Analysis data management functions and data output

CO'S PO'S&PSO'S MAPPING

		DOO			DOT	DOC	D07	DOO	DOO	РО	РО	PO	PSO	PSO	PSO
	POI	PO2	P03	PO4	P05	P06	P0/	P08	PO9	10	11	12	1	2	3
CO1	2	2	2	-	-	-	-	-	-	2	-	-	-	-	-
CO2	2	2	2	-	-	-	-	-	-	2	-	-	2	-	2
CO3	2	2	2	-	-	-	-	-	-	2	-	-	-	2	-
CO4	2	2	2	-	-	-	-	-	-	2	-	-	2	-	2
CO5	2	2	2	-	-	-	-	-	-	2	-	-	-	-	-

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Kang - Tsung Chang, Introduction to Geographic Information Systems, McGraw Hill Publishing, 2nd Edition, 2011.

2. Ian Heywood, Sarah Cornelius, Steve Carver, Srinivasa Raju, "An Introduction Geographical Information Systems, Pearson Education, 2nd Edition, 2007

REFERENCE BOOKS:

1. Lo. C. P., Albert K.W. Yeung, Concepts and Techniques of Geographic Information Systems, Prentice-

Hall India Publishers, 2006

WEB RESOURCES:

1.Https://Education.Nationalgeographic.Org/Resource/Geographic-Information-System-Gis/

AE606308 GUID	ANCE AND CONTR	OL				
Course Category: Vertical 3	Course Type:	L	Т	Р	С	
Course Category. Vertical 5	Theory	3	0	0	3	
COURSE OBJECTIVES:				•		-1
• To learn about the aircraft equations of m	otion and method of lin	earizati	on.			
• To learn about the operating principle of g	guidance law.					
• To study about the augmentation systems						
• To study longitudinal stability and to desi	gn the longitudinal auto	pilot.				
• To study lateral stability and to design the	e lateral autopilot					
UNIT I INTRODUCTION						9
Introduction to Guidance and control - Def	inition, Historical bac	kgroun	d – C	oordina	te Fra	me -
Equations of motion – Linearization.						
UNIT II AUGMENTATION SYSTEMS						9
Need for automatic flight control systems,	Stability augmentation	syste	ms, co	ntrol a	ugmen	tation
systems, Design of Limited authority and Fu	ll Authority Augmenta	ation s	ystems	- Gain	sched	luling
concepts.						
UNIT III LONGITUDINAL AUTOPILOT						9
Displacement Autopilot -Pitch Orientation Con	trol system, Accelerat	ion Co	ntrol S	ystem,	Glide	Slope
Coupler and Automatic Flare Control and Fli	ght path stabilization,	Longit	udinal	control	law d	lesign
using back stepping algorithm.						
UNIT IV LATERAL AUTOPILOT						9
Damping of the Dutch Roll, Methods of Obt	aining Coordination,	Yaw O	rientatio	on Con	trol sy	vstem,
turn compensation, Automatic lateral Beam	Guidance. Introductio	on to l	Fly-by-	wire fli	ight co	ontrol
systems, Lateral control law design using back st	epping algorithm.					
UNIT V MISSILE AND LAUNCH VEHICLE	GUIDANCE					9
Operating principles and design of guidance	laws, homing guida	nce lav	vs- sho	ort rang	ge, Me	edium
range and BVR missiles, Launch Vehicle-	Introduction, Mission	require	ements,	Implic	it gui	dance
schemes, Explicit guidance, Q guidance scheme						
			ΤΟ	ГАL: 4	5 PER	IODS
COURSE OUTCOMES: At the end of the course	e, the students will be ab	le to				
CO1.Explain the equations governing the aircraft	dynamics and the proc	ess of li	inearizi	ng them	l .	
CO2.Define the various guidance schemes and re	equirements for aircrafts	and m	issiles.			
CO3. Apply the principle of stability and control	augmentation systems.					

CO4. Analyse the oscillatory modes and methods of suppressing them

CO5. Design the controller for lateral, longitudinal and directional control of aircrafts.

CO'S PO'S&PSO'S MAPPING

										PO	PO	PO	PSO	PSO	PSO
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	10	11	12	1	2	3
CO1	3	3	2	-	-	-	-	-	-	2	-	-	2	2	-
CO2	3	2	2	-	-	-	-	-	-	2	-	-	2	2	2
CO3	3	2	2	-	-	-	-	-	-	2	-	-	2	2	-
CO4	3	2	2	-	-	-	-	-	-	2	-	-	-	2	2
CO5	3	2	2	-	-	-	-	-	-	2	-	-	2	2	2

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1.Blakelock, J. H., "Automatic Control of Aircraft and Missiles", Wiley India Pvt Ltd; Second edition (24 February 2011)

2.Collinson R.P.G, 'Introduction to Avionics', Springer 2012

3.Garnel. P. & East. D. J, 'Guided Weapon control systems', Pergamon Press, Oxford, 1977

REFERENCE BOOKS:

1.Michael V. Cook 'Flight Dynamics Principles: A Linear Systems Approach to Aircraft Stability and Control', Elsevier, 2010.

2.Nelson R.C, 'Flight stability & Automatic Control', McGraw Hill, 2nd edition 2017

3.Pierre T. Kabamba, Anouck R. Girard. 'Fundamentals of Aerospace Navigation and Guidance', Cambridge university press, 2014

WEB RESOURCES:

1.Https://Www.Sciencedirect.Com/Science/Article/Abs/Pii/B9781483167169500060

AE606309 NAVIGATION AND COMMUNICATION SYSTEMS Т Р С **Course Type:** L **Course Category: Vertical 3** Theory 3 0 0 3 **COURSE OBJECTIVES:** To introduce various types of navigation systems. ٠ To understand the dead reckoning navigation system and its error correction. • To know satellite navigation and hybrid navigation system integration To learn the concepts of radio transmitters and receivers To acquire knowledge about weather radar systems and DME UNIT I INERTIAL NAVIGATION SYSTEMS 9 Introduction to navigation - Types -INS components- transfer function and errors - Earth in inertial space - Coriolis Effect - INS Mechanization. Platform and Strap down - Navigation algorithms - INS system block diagram, Different co-ordinate systems - Transformation Techniques - Schuler Tuning - compensation errors - Gimbal lock - Initial calibration and Alignment Algorithms **UNIT II RADIO NAVIATION & SATELLITE NAVIGATION** 9 Different types of radio navigation- ADF, VOR, DME - Doppler - Hyperbolic Navigations -LORAN, DECCA and Omega - TACAN. Introduction to GPS -system description -basic principles -position and velocity determination signal Structure -DGPS, Introduction to Kalman filtering-Estimation and mixed mode navigation Integration of GPS and INS-utilization of navigation systems in aircraft. UNIT III RADIO TRANSMITTERS AND RECEIVERS 9 Functions of a Radio transmitter, Microphones, types, Block diagram explanation of a Radio transmitter, Modulation and its types and Antenna, Antenna couplers, Qualities of a good Radio receiver, Block diagram of a simple radio receiver and super heterodyne receiver UNIT IV AIRCRAFT COMMUNICATION SYSTEMS 9 Basics of aircraft communication system, types Very High Frequency Communication system, Description, Principle, Operation of VHF Communication system and its layout on aircraft, High Frequency communication system, Description, Principle and operation of High Frequency communication system and its layout on aircraft. Satellite communication system, Description, Operation and its layout on aircraft 9 UNIT V WEATHER RADAR SYSTEM AND DME Operating principles and design of guidance laws, homing guidance laws- short range, Medium range and BVR missiles, Launch Vehicle- Introduction, Mission requirements, Implicit guidance schemes, Explicit guidance, Q guidance scheme

COURSE OUTCOMES: At the end of the course, the students will be able to

CO1. Analysis the advanced concepts of Aircraft Navigation

CO2.To provide the necessary mathematical knowledge those are needed in modeling the navigation process and methods.

CO3. The students will have an exposure on various Navigation systems such as Inertial Measurement systems, Radio Navigation Systems, Satellite Navigation – GPS.

CO4. Landing aids and will be able to deploy these skills effectively in the analysis and understanding of navigation systems in an aircraft.

CO5. Learn and apply the principles of Radar and its related components.

CO'S PO'S&PSO'S MAPPING

	DO1	DOO	DO2	DO 4	DOC	DOC	DO7	DOO	DOO	РО	РО	РО	PSO	PSO	PSO
	POI	PO2	PO3	PO4	PO5	PO6	PO/	PO8	PO9	10	11	12	1	2	3
CO1	3	2	3	-	-	-	-	-	-	2	-	-	3	-	-
CO2	3	2	2	-	-	-	-	-	-	2	-	-	-	2	2
CO3	2	2	2	-	-	-	-	-	-	2	-	-	2	2	2
CO4	2	2	2	-	-	-	-	-	-	2	-	-	2	2	2
CO5	2	2	2	-	-	-	-	-	-	2	-	-	-	_	-

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Avionics Navigation Systems – Myron Kayton, Walter R.Fried, Second Edition, Wiley India Edition, 2010

2. Aircraft Communications and Navigation systems – Mike Tooley and David Wyatt, Reed Elsevier, India, Noida, Edition – 2007)

REFERENCE BOOKS:

1.Aircraft Electricity and electronics by Thomas K Eismin (Fifth edition-1994, McGraw- Hill Book Co)

2. Aircraft Radio system by James Powell, Sterling book house, Mumbai, Indian edition - 2006

WEB RESOURCES:

1.Https://Www.Aeroclass.Org/Aircraft-Navigation/

 $2.\ https://www.aircraftnerds.com/2018/08/how-does-aircraft-navigation-system-work.html$

Vertical-4

ROCKETS AND MISSILES

CURRICULUM

S. No.	Course Code	Course Title	Classification		L	Т	Р	С
1	AE606401	Basics of Rockets and missiles	PE	Theory	3	0	0	3
2	AE606402	Missile Aerodynamics	PE	Theory	3	0	0	3
3	AE606403	Space Mechanics	PE	Theory	3	0	0	3
4	AE606404	Cryogenics (NPTEL)	PE	Theory	3	0	0	3
5	AE606405	Remote Sensing Concepts	PE	Theory	3	0	0	3
6	AE606406	Missile Guidance and Control (NPTEL)	PE	Theory	3	0	0	3
7	AE606407	Chemical Rockets	PE	Theory	3	0	0	3
8	AE606408	Launch Vehicle Technology	PE	Theory	3	0	0	3
9	AE606409	Combustion Theory	PE	Theory	3	0	0	3
10	AE 606410	Rocket Propulsion	PE	Theory	3	0	0	3

AE606401 BASICS OF ROCKETS AND MISSILES

9

9

9

Course Cotogony Vertical 4	Course Type:	L	Т	Р	С	
Course Category: Vertical 4	Theory	3	0	0	3	
COURSE OBJECTIVES:						

- To impart knowledge on the aerodynamic characteristics of different classes of missiles
- To provide the methodology to estimate the drag on a subsonic/supersonic missile.
- To introduce the 1D and 2D motion of rockets in free space and in homogeneous gravitational field.
- To explore the need for multi staging in rockets
- To make the student understand the concept of vorticity, irrotationality, theory of airfoils and wing sections

UNIT 1: INTRODUCTION

Space launch Vehicles and military missiles, function, types, role, mission, mission profile, thrust profile, propulsion system, payload, staging, control and guidance requirements, performance measures, design, construction, operation, similarities and differences. Some famous space launch vehicles and strategic missiles.

UNIT 2: SOLID PROPELLANT ROCKET MOTOR SYSTEMS

Solid Propellant rocket motors, principal features, applications. Solid propellants, types, composition, properties, performance. Propellant grain, desirable properties, grain configuration, preparation, loading, structural design of grain. Liners, insulators and inhibitors, function, requirements, materials. Rocket motor casing – materials. Nozzles, types, design, construction, thermal protection. Igniters, types, construction.

UNIT 3: AERODYNAMICS OF ROCKETS AND MISSILES

Classification of missiles. Airframe components of rockets and missiles, Forces acting on a missile while passing through atmosphere, method of describing aerodynamic forces and moments, lateral aerodynamic moment, lateral damping moment, longitudinal moment of a rocket, lift and drag forces, drag estimation, body upwash and downwash in missiles. Rocket dispersion, re-entry body design considerations.

UNIT 4: LAUNCH VEHICLE DYNAMICS

Tsiolkovsky's rocket equation, range in the absence of gravity, vertical motion in the earth's gravitational field, inclined motion, flight path at constant pitch angle, motion in the atmosphere, the gravity turn – the culmination altitude, multi staging. Earth launch trajectories – vertical segment, the gravity turn, constant pitch trajectory, orbital injection. Actual launch vehicle trajectories.

UNIT 5: ROCKET TESTING

Ground Testing and Flight Testing, Types of Tests facilities and safeguards, monitoring and control of toxic materials, instrumentation and data management. Ground Testing, Flight Testing, Trajectory

119

monitoring, post -accident procedures. Description of a typical space launch vehicle launch procedure. Materials: Criteria for selection of materials for rockets and missiles, requirements for choice of materials for propellant tanks, liners, insulators, inhibitors, at cryogenic temperatures, requirements of materials at extremely high temperatures, requirements of materials for thermal protection and for pressure vessels.

TOTAL: 45 PERIODS

COURSE OUTCOMES: On successful completion of this course, the student will be able to

CO1: Identify the types of space launch vehicles and missiles.

CO2: Distinguish the solid and liquid propellant motors.

CO3: Classify different types of materials used for rockets and missies.

CO4: Optimize a multi stage rocket based on given constraint

CO5: An ability to apply airfoil theory to rocket testing

CO6: Ability to understand the subsonic wing theory.

CO'S PO'S&PSO'S MAPPING

	DO1	DOJ			DO5	DOG	DO7	DOS		PO	PO	РО	PSO	PSO	PSO
	FUI	FO2	F05	F04	FUJ	FOO	FO/	FUð	F09	10	11	12	1	2	3
CO1	2		3	-	-	2	2	-	-	-	2	3	2	-	3
CO2	2	3	2	-	3	-	-	-	-	-	2	2	2	3	2
CO3	2	3	2	-	3	-	-	-	-	-	2	2	2	3	2
CO4	-	2	2	2	2	2	2	-	2	-	2	-	-	2	2
CO5	2	3	2	2	3	-	-	-	-	-	-	3	2	2	2

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

Rocket Propulsion Element-George P Sutton and Oscar Biblarz Missile Aerodynamics-Jack N Neilson
 Sutton, G.P. "Rocket Propulsion Elements", John Wiley & Sons; 8thEdition 2010.

3. Anderson, J.D., "Fundamentals of Aerodynamics", McGraw Hill Book Co. Fifth edition2011

4.E.RathaKrishnan "Theoretical Aerodynamics" Wiley First edition 2013

5. Houghton, E.L., and Caruthers, N.B., "Aerodynamics for Engineering students", Edward Arnold Publishers Ltd., London, 1989

REFERENCE BOOKS:

1. Rocket Propulsion and Space-Flight Dynamics-Cornelisse, J.W, Schoyer H.F.R. and Wakker, K.F

2.Rocket and Spacecraft propulsion-Turner, M.J.L

3.Space Vehicle Dynamics-Ball, K.J., Osborne, G.F

AE606402 MIS	SSILE AERODY	NAMI	CS		AE606402 MISSILE AERODYNAMICS												
Course Cotogony, Venticel 8	Course Type:	L	Т	Р	С												
Course Category: Vertical 8	Theory	3	0	0	3												
COURSE OBJECTIVES:																	
• To import knowledge on the aerodynamic characteristics of different classes of missiles																	

To impart knowledge on the aerodynamic characteristics of different classes of missiles

- To provide the methodology to estimate the drag on a subsonic/supersonic missile.
- To introduce the 1D and 2D motion of rockets in free space and in homogeneous gravitational field.
- To explore the need for multi staging in rockets
- To make the student understand the concept of vorticity, irrotationality, theory of airfoils and wing

UNIT 1: CLASSIFICATION OF ROCKETS AND LAUNCH VEHICLES

Airframe components of rockets and Launch Vehicles –forces acting on a missile while passing through atmosphere –slender body aerodynamics –method of describing forces and moments –lift force and lateral moment –lateral aerodynamic damping moment –longitudinal moment –drag estimation-Rocket Dispersion.

UNIT 2: AERODYNAMICS OF ROCKETS AND LAUNCH VEHICLES

Airframe components of rockets and Launch Vehicles –forces acting on a missile while passing through atmosphere –slender body aerodynamics –method of describing forces and moments –lift force and lateral moment –lateral aerodynamic damping moment –longitudinal moment –drag estimation-Rocket Dispersion

UNIT 3: ROCKET MOTION IN FREE SPACE AND GRAVITATIONAL FIELD

One dimensional and two-dimensional rocket motions in free space and homogeneous gravitational fields –description of vertical, inclined and gravity turn trajectories –determination of range and altitude –simple approximations to burnout velocity and altitude –estimation of culmination time and altitude –Ballistic trajectories.

UNIT 4: CONTROL OF ROCKETS AND LAUNCH VEHICLES

Introduction to aerodynamic control and jet control methods-thrust control methods -various types of jet

control methods including secondary injection thrust vector control for launch vehicles –Characteristics of aerodynamic control methods

UNIT 5: AIRFOIL & SUBSONIC WING THEORY

Cauchy-Riemann relations, complex potential, methodology of conformal transformation, Kutta Joukowski transformation and its applications, Karmann-Trefftz profiles, thin airfoil theory and its applications. Vortex filament, biot and savart law, bound vortex and trailing vortex, horse shoe vortex, Prandtl's lifting line theory and its limitations

TOTAL: 45 PERIODS

9

9

9

COURSE OUTCOMES: On successful completion of this course, the student will be able to

CO1: Classify missiles based on different aspects .

CO2: Calculate the forces and moments that act on a missile in atmosphere..

CO3: Perform the calculations pertaining to altitude and range covered by rockets in homogeneous gravitational field.

CO4: Optimize a multi stage rocket based on given constraint

CO5: An ability to apply airfoil theory to predict airfoil performance

CO6: Ability to understand the subsonic wing theory.

CO'S PO'S&PSO'S MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2		3	-	-	2	2	-	-	-	2	3	2	-	3
CO2	2	3	2	-	3	-	-	-	-	-	2	2	2	3	2
CO3	2	3	2	-	3	-	-	-	-	-	2	2	2	3	2
CO4	-	2	2	2	2	2	2	-	2	-	2	-	-	2	2
CO5	2	3	2	2	3	-	-	-	-	-	-	3	2	2	2

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

Cornelisse, J.W., "Rocket Propulsion and Space Dynamics", J.W. Freeman &Co.,Ltd, London, 1982.
 Sutton,G.P. "Rocket Propulsion Elements", John Wiley & Sons; 8thEdition 2010.

3. Anderson, J.D., "Fundamentals of Aerodynamics", McGraw Hill Book Co. Fifth edition2011

4.E.RathaKrishnan "Theoretical Aerodynamics" Wiley First edition 2013

5. Houghton, E.L., and Caruthers, N.B., "Aerodynamics for Engineering students", Edward Arnold Publishers Ltd., London, 1989

REFERENCE BOOKS:

1. Mathur, M.L.and Sharma, R.P., "Gas Turbine, Jet and Rocket Propulsion", Standard Publishers & Distributors, Delhi, 2nd edition 2014.

2. Clancy, L J.," Aerodynamics", Pitman, Company Second edition 1986

3. Milne, L.H., Thomson, Theoretical Aerodynamics, Dover Publishing company Second edition 1985.

AE606403	SPACE MECHA	NICS				
Course Cotogony, Ventical 4	Course Type:	L	Т	Р	С	
Course Category: Vertical 4	Theory	3	0	0	3	
COURSE OBJECTIVES:						
• To introduce enosiel needs for manned	ana a missions on		lavlatio	n of an		inonment to

• To introduce special needs for manned space missions and pre calculation of space environment to students.

• To impart the knowledge on basis concepts of space mechanics like Newton's law of gravitation and its applications, reference co-ordinate systems and position vs time relationships of celestial bodies.

- To acquaint students on the methodologies for computation of satellite orbit perturbations
- To elucidate the concepts of space of influence and its purpose in computing interplanetary trajectories to students.
- To impart knowledge of various phases of ballistic trajectories and special features of re-entry phase to students.

UNIT 1: SPACE ENVIRONMENT

Peculiarities of space environment and its description- effect of space environment on materials of spacecraft

structure and astronauts- manned space missions – effect on satellite life time.

UNIT 2: BASIC CONCEPTS AND THE GENERAL N- BODY PROBLEM

The solar system – reference frames and coordinate systems – terminology related to the celestial sphere and its associated concepts – Kepler's laws of planetary motion and proof of the laws – Newton's universal law of

9

gravitation - the many body problem - Lagrange-Jacobi identity - the circular restricted three body problem libration points – the general N-body problem – two body problem – relations between position and time. **UNIT 3: SATELLITE INJECTION AND SATELLITE PERTURBATIONS** General aspects of satellite injection – satellite orbit transfer – various cases – orbit deviations due to injection errors - special and general perturbations - Cowell's method and Encke's method - method of variations of orbital elements - general perturbations approach.. **UNIT 4: INTERPLANETARY TRAJECTORIES** 9 Two Dimensional Interplanetary Trajectories -Fast Interplanetary Trajectories - Three Dimensional Interplanetary Trajectories - Launch of Interplanetary Spacecraft - Trajectory about the Target Planet concept of sphere of influence – Lambert's theorem. **UNIT 5: BALLISTIC MISSILE TRAJECTORIES** 9 Introduction to ballistic missile trajectories - boost phase - the ballistic phase - trajectory geometry - optimal flights - time of flight - re-entry phase - the position of impact point - influence coefficients.s **TOTAL: 45 PERIODS COURSE OUTCOMES:** On successful completion of this course, the student will be able to CO1: Acquire knowledge on the unique features of space environment and its effect on space craft and astronauts. CO2: Compute position of bodies in orbits in terms of their coordinates with respect to time. CO3: Gain insights on the intricate aspects of satellite injectors. CO4: Determine and compute interplanetary trajectories CO5: Make calculations of all important phases of missile trajectories

CO'S PO'S&PSO'S MAPPING

	DO1	DOJ	DO2		DO5	DOG	DO7		DOO	PO	PO	PO	PSO	PSO	PSO
	POI	PO2	P05	P04	POS	PU0	PO/	PU8	P09	10	11	12	1	2	3
CO1	2	2	2	-	-	2	2	-	2	1	2	2	2	2	2
CO2	2	2	-	2	2	-	2	-	2	1	2	2	2	2	-
CO3	2	2	2	2	2	2	-	-	2	1	2	2	2	2	2
CO4	2	2	2	-	2	-	-	-	2	-	2	2	2	2	2
CO5	2	2	-	2	2	-	-	-	2	-	2	2	2	2	-

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Cornelisse, J.W., "Rocket Propulsion and Space Dynamics", J.W. Freeman & Co., Ltd, London, 1982.

2. Parker, E.R., "Materials for Missiles and Spacecraft", Mc.Graw Hill Book Co. Inc., 1982.

REFERENCE BOOKS:

1. Sutton, G.P., "Rocket Propulsion Elements", John Wiley & Sons Inc., New York, 5Th Edition, 1993

WEB RESOURCES:

1. space mechanics: https://nptel.ac.in/courses/1034569140

AE606404	CRYOGENICS					
Course Category: Vertical 4	Course Type:		T	P	<u>C</u>	-
COURSE OBJECTIVES:	Ineory	3	0	U	3	<u></u>
 Identify cryogenic substance and exami Gain knowledge in various measuremen Explain the importance of cryogenic ins Explain the hazard waste management a Obtain ideas in the various applications 	ne its characteristics in at systems. sulations. and superconductive dev of cryogenic systems.	cryogei vices.	nic envii	onmen	ts.	
UNIT 1: INTRODUCTION Meaning & definition of cryogenics. Importance of	f cryogenics studies, pro	operties	of engi	neering	mater	9 ials at
cryogenic temperatures. Thermo physical and flu	uid dynamic properties	s of lia	uid and	gas hy	drogen	n and
oxygen. Liquefaction systems of hydrogen and o	xygen gases. Joule The	omson	effect a	nd inve	rsion c	curve:
Adiabatic and isenthalpic expansion with their com	iparison.					
UNIT 2: CRYOGENIC MEASUREMENT SYS	TEMS					9
Temperature measurements, pressure measurement	nts, flow measurements	s, liquic	l level r	neasure	ments,	fluid
quality measurements.						
UNIT 3: IMPORTANCE OF CRYOGENIC IN	SULATIONS					9
Various factors for selection of insulations, vario	ous types such as expa	anded f	oams, g	as fille	d&fi	brous
insulation, vacuum insulation, evacuated powder	& fibrous insulation, o	opacitie	s powd	er insul	ation,	multi
layer insulation, comparison of performance of var	ious insulations.					
UNIT 4: HAZARD WASTE MANAGEMENT		1		1 1		9
Physical hazards, Chemical hazards, Physiological	hazards, Combustion f	hazards,	oxygen	hazard	s,, acci	idents
in cryogenic plants & Prevention Safety in hand	lling of cryogens, care	for sto	orage of	gaseou	is cylii	nders,
familiarization with regulations of environmen	tal safety department.	. Powd	er insu	lation	by boi	il off
calorimeter method.						
UNIT 5: SALIENT APPLICATIONS OF CRYC	DGENIC SYSTEMS					9
Super conductive devices such as bearings, motor	s, cryotrons, magnets, s	space te	chnolog	y, spac	e simu	lation
chamber, food preservation and industrial applicati	ons, nuclear propulsion	is, chem	nical pro	pulsion	s.	
COURSE OUTCOMES, At the end of the course	the student will be able	to.	TO	ГАL: 4	5 PER	IODS
COLL Demonstrate the characteristics of the cryoge	enic fluid and the challe	nges ac	quiredir	achiev	ing it.	
CO2. Explain the working of in various measureme	ent systems used in Cry	ogenics	5.			
CO3. Explain the importance of cryogenic insulation	ons.					
CO4. Explain the hazard waste management and su	uperconductive devices.					·
CO5. Obtain ideas in the various applications of cr	yogenic systems					

CO'S PO'S&PSO'S MAPPING

		DOO	DO2	DO 4	DO5	DOC	D07	DOO	DOO	PO	PO	PO	PSO	PSO	PSO
	POI	PO2	PO3	PO4	PO5	PO6	PO/	PO8	PO9	10	11	12	1	2	3
CO1	2	-	-	-	-	2	2	-	2	2	-	2	1	2	-
CO2	2	-	-	-	2	3	2	-	-	-	-	-	1	2	2
CO3	2	-	2	-	2	2	3	-	2	-	-	2	_	_	-
CO4	2	-	-	-	2	-	-	-	-	-	-	-	-	-	-
CO5	2	-	-	-	2	-	-	-	2	-	-	2	2	-	2
		1	1- low,	2 - me	dium, i	3 - higl	h, '-' n	o corr	elation	l					
						_									
TEXT	BOOK	S:													
1 Cryc	1. Cryogenic process engineering Timmerch and & Flynn Springer 1989.														
I. Cryc	1. Cryogenie process engineering Tinnieren and & Frynn Springer 1767.														
2. Cryc	genic I	Fundam	nentals,	G.G. I	Haselde	en, Aca	demic	Press. 1	New Y	ork, 19	972.				
3. Cryc	genic S	Systems	s, Rand	all. F.F	Barron,	Oxfore	d Unive	ersity P	ress se	cond e	dition	, 1989	€.		
REFE	RENCI	E BOO	KS:												
1. Cryc	genics	: Appli	cations	and Pr	ogress.	A. Bo	se and	P. Seng	gupta, 7	Fata M	cGrav	v Hill.			
2. Hand	ibook d	of Crvo	genic H	Enginee	ring. E	Editor –	J.G. W	Veisend	I II. Ta	vlor an	d Fra	ncis			
3. Crvc	genic I	Process	Engine	eering.	<u>K.D.</u> T	immer	haus ar	nd T.M	. Flvnn	. Plen	um Pre	ess.			
4. Adv	4. Advanced Cryogenics. Editor – C.A. Bailey. Plenum Press.														
5. App	ied Cry	vogenic	Engin	eering.	Editor	$r_{\rm S} - R.V$	V. Van	ce and	W.M.	Duke.	John V	Vilev	& sons		
WER I	RESOI		<u></u>		201101		· · · un			- 4110,		, neg (•	
1 Intro	luction	to Crv	ngenic	Engine	ering	https://	nntel a	c in/co	urses/1	12101	004				
1.111100	440010II	10 CI y	ogenie	Linging	ering.		inpici.u		GI DOD/ 1	12101	001				

AE6064	AE606405- REMOTE SENSING CONCEPTS												
Course Cotogory Vertical 4	Course Type, Theory	L	Т	P	С								
Course Category: Vertical 4	Course Type: Theory	3	0	0	3								
COURSE OBJECTIVES:													
 To familiarize about the bas To acquire knowledge abou To expose the various types To gain knowledge about the transformation of the provided of the provi	sic principles of remote sensing t the motion of remote sensing sa of sensors used for remote sensi- te generation of satellite data pro-	atellites i ng ducts	in the s _j	pace									
• To extract useful informatio	on from saterinte images												
UNIT 1: PHYSICS OF REMOTE SI	ENSING					9							
Remote Sensing - Defintion - Compo	onents - Electro Magnetic Spect	trum – l	Basic w	ave the	eory –	Particle							
theory – Stefan Boltzman law - Wiens	-Displacement Law - Radiometr	ic quanti	ities - E	effects of	of Atmo	osphere-							
Scattering – Different types –Absorpt	ion-Atmospheric window- Energ	gy intera	ction v	vith sur	face fe	atures –							
Spectral reflectance of vegetation, soil	and water -atmospheric influence	e on spe	ectral re	sponse	pattern	ıs- multi							
concept in Remote sensing.													
UNIT 2: PLATFORMS						9							
Orbit elements – Types of orbits – M	Motions of planets and satellites	s – Laur	nch of	space v	<i>vehicle</i>	– Orbit							
perturbations and maneuvers – escap	be velocity - Types and charac	teristics	of dif	ferent r	emote	sensing							

platforms – sun synchronous and geo synchronous satellites.

scanner	s and r	nicrow	ave ser	nsors –	geome	tric cha	aracteri	stics of	scanne	er ima	gery –	Opera	tional I	Earth re	esource
satellite	es - Lar	ndsat, S	POT, I	RS, W	orld Vi	ew, hy	perion	and hy	sis, ER	S, EN	VISA	Г, Sen	tinel.		
UNIT 4	4: DAT	'A REC	CEPTI	ON A	ND DA	TA PH	RODU	CTS							9
Ground	l segme	ent org	anizati	on – D	ata pro	duct g	eneratio	on – sc	ources of	of erro	ors in 1	receive	ed data	– refei	rencing
scheme	– data	produc	ct outp	ut medi	ium – I	Digital _J	product	ts – Suj	per stru	cture,	Fast,	Geo T	IFF, Hi	erarchi	cal and
HDF fo	ormats -	– India	n and I	nternat	ional S	atellite	Data P	roduct	s – orde	ering o	of data	•			
UNIT :	5: DAT	'A ANA	ALYSI	[S											9
Data p	roducts	and th	neir ch	aracter	istics –	Eleme	ents of	visual	interp	retatio	n – in	terpre	tation k	xeys –	Digital
image	proces	sing –	- Prep	rocessi	ng –	Image	rectifi	cation	– Im	age e	nhanc	ement	techni	ques-	Image
classifi	cation	– Supe	ervised	and u	nsuperv	vised c	lassific	ation a	lgorith	ms for	r mult	ispectı	al and	hypers	spectral
images	- Acc	uracy a	issessn	nent h	ybrid o	classific	cation t	techniq	ues – I	Knowl	edge 1	based	classifie	cation,	Neural
Networ	k Class	sificatio	on, Fuz	zy Cla	ssificat	ion.									
												TC	TAL:	45 PEI	RIODS
COUR	SE OU	TCON	ÆS: A	t the er	nd of th	e cours	e, the st	tudent	will be	able to)				
CO1:U	ndersta	nd the	concep	ots and	laws re	lated to	o remot	te sensi	ng						
CO2:A	cquire	knowle	edge ab	out var	rious re	mote se	ensing	platfor	ms						
$\frac{\text{CO3:U}}{\text{CO4.C}}$	ndersta	ind the	charac	teristic	s of dif	ferent t	ypes of	f remot	e senso	rs	•	<u> </u>	. 1 .		
CO4:G	ain kno	wledge	e about	recept	10n, pro	oduct g	enerati	on, stor	rage an	d orde	ring o	f satel	lite data	l .11:41.	
005:0	ndersta	nd the	concep	ot of all	Terent	image j	process	ing tec	nnique	s and i	interpr	etatior	1 OF Sate	enite da	ita
CO'S I	• • • • • • • • • • • • • • • • • • •	PSO'S	MAPI	PING											
00.01	0.54	1000													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	_	3	_	_	_	_	_	_	-	-	2	2	-	-
CO2	-	3	-	2	-	-	-	-	2	-	-	-	-	2	1
CO3	2	-	3	-	-	-	-	-	-	-	-	2	2	-	-
CO4	2	-	-	2	3	-	-	-	-	-	-	-	-	-	-
CO5	-	3	-	-	-	-	-	-	-	-	-	-	-	-	
]	l- low,	2 - me	dium,	3 - hig	h, '-' n	o corr	elation						
TEXT	BOOK	S:													
1. Lille Sons-2	sand T	.M., ar	nd Kief	er,R.W	. Rem	ote Ser	ising ai	nd Ima	ge inte	rpreta	tion, V	/I edit	ion of J	John W	viley &
2. John	R. Jen	sen, Int	roduct	ory Dig	gital Im	age Pr	ocessin	g: A R	emote	Sensin	g Pers	pectiv	e, 4th E	Edition,	2015.
3. John	A.Ricl	hards. S	Springe	er – Vei	rlag. Re	emate S	Sensing	Digita	l Image	e Anal	vsis 5	h edit	ion. 201	13.	
REEL	PENCI	T ROO	KS			~		, 218100					,		
1. Paul	Curran	P.J. P	rincinle	es of Re	emote S	Sensino	ELBS	5: 1985							
2 Geo	rge Ios	senh F	Fundam	entals	of Rei	note S	ensing	Third	Editic	n Ur	iversi	ties Pr	ess (In	dia) P	vt Ltd
L. Geo Hydera	bad, $2($)18	sindull	uis			-110111 <u>6</u> ,	, 11110		, 01			- 55 (III		Lu,
							1.24								
	D	epartm	ent of A	eronau	tical En	gineerir	ng BoS C	Chairma	n/Facul	ty of N	1echan	ical En	gineerin	g	

Classification of remote sensors - selection of sensor parameters - resolution concept - Spectral, Radiometric

and temporal resolution - Quality of images - imaging mode - photographic camera - opto-mechanical

scanners - pushbroom and whiskbroom cameras - Panchromatic, multi spectral, thermal, hyperspectral

9

UNIT 3: SENSORS

3. Verbyla, David, Satellite Remote Sensing of Natural Resources. CRC Press, 1995

4. Basudeb Bhatta, Remote Sensing and GIS, Oxford University Press, 2011

WEB RESOURCES:

1.Remote Sensing: https://nptel.ac.in/courses/105108077

AE606406 MISSILE O	GUIDANCE AND CO	ONTRO	L			
Course Category: Vertical 4	Course Type:		T	P	C	
COURSE OBJECTIVES:	Theory	3	U	0	3	
• To study the concepts of navigation.						
• To learn the basic concepts of missile	guidance					
To learn the busic concepts of missile	Suldance.					
• To learn various guidance laws.						
• To understand the missile autopilot sy	vstem.					
To learn various missile control metho	ods.					
UNIT I: CONCEPTS OF NAVIGATION	and control Introduc	tion to 1	nasio n	rincinle		9 r data
information. Dodon Systems Dringinla of working	and control. Introduc				5. Al	i uata
information. Radar Systems Principle of Working	g of radar. MITI and P	uise Dop	pier rad	ar. Mo	oving	target
detector. Limitation of MTI performance. MTI fi	rom a moving platform	n (AMT)	.).			
UNIT 2: MISSILE GUIDANCE	1					9
History of Guided Missile for Air Defence Ap	plications - Classifica	ation of	M1ss1le	s-Tacti	cal N	/lissile
Description-Fundamentals of Guidance - Basic	Results in Intercepti	on and	Avoida	nce Ta	xono	my of
Guidance Laws, Command and Homing Guidan	ce Classical Guidance	e Laws -	Pursuit	, LOS,	CLOS	S, BR,
Proportional Navigation and Its Variants Like PF	PN, BPN, APN, TPN,	GPN and	l IPN.			
UNIT 3: MODERN GUIDANCE LAWS						9
Modern guidance Laws-Guidance Laws Derived	from Optimal Contro	ol Theory	y and L	yapunc	ov me	thod -
PPN with Non-Manoeuvring and Manoeuvring	g Targets–Qualitative	analysis	s. Com	parativ	e Stu	ıdy of
Guidance Laws from the Point of View of Time,	Miss-Distance, Laun	ch Boun	daries,	Control	l Effo	ort and
Implementation Difficulties.						
UNIT 4: MISSILE AUTOPILOTS						9
Missile Autopilots - Flight Control System-Pitch	n, Yaw and Roll Auto	pilot - C	ontrol S	Surface	s Au	topilot
Commands - Dither Adaptive Control-Inertial R	eference Adaptive Co	ontrol. Fu	inctiona	al Bloc	k Dia	ıgram-
Angle Tracking and Seeker Head Stabilization-R	adom Refraction Aero	odynami	cs for A	Autopilo	ot De	sign.
UNIT 5: MISSILE CONTROL METHODS						9
Missile Control Methods -Optimal Filtering	- Simulations. Form	ulation	of op	timal o	contro	ol for
performance of aerospace systems-Riccatti	equations-Performance	ce meas	ure-Op	timal	mid-	course

guidance.

TOTAL: 45 PERIODS

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1: Explain the concepts of navigation.

CO2: Understand the basic concepts of missile guidance.

CO3: Explain various guidance laws.

CO4: Understand the missile autopilot system

CO5: Identify the suitable missile control method.

CO'S PO'S&PSO'S MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3	3	2	-	-	-	-	-	-	-	-	2	-	-
CO2	3	3	3	2	-	1	-	1	1	1	1	2	1	-	-
CO3	3	3	2	2	2	-	1	-	-	-	1	-	2	1	1
CO4	3	3	2	2	2	1	1	-	1	1	-	1	2	-	1
CO5	3	3	3	2	2	1	1	-	-	1	1	1	2	1	1

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. George M. Siouris, 'Missile Guidance and Control Systems', Springer Verlag, New York Inc., 2004.

2. Paul Zarchan, 'Tactical and Strategic Missile Guidance', AIAA, Inc., Sixth Edition, 2012.

3. N.A. Shneydor, 'Missile Guidance and Pursuit: Kinematics, Dynamics and Control', Ellis Horwood Publishers, 1998.

REFERENCE BOOKS:

1. Eichblatt E. J., 'Test and Evaluation of the Tactical Missiles', AIAA Inc, 1989.

2. Ching-Fang-Lin, 'Modern Navigation, Guidance and Control Processing', Prentice- Hall, Inc., Englewood Cliffs, New Jersey, 1991.

3. R. Yanushevsky, 'Modern Missile Guidance', CRC Press, 2008.

4. P. Garnell, 'Guided Weapon Control Systems', Second Edition, Brassey'sDefence Publishers, London, 1987.

WEB RESOURCES:

1.Guidance of Missiles: https://archive.nptel.ac.in/courses/101/108/101108054/

AE606407- C	AE606407- CHEMICAL ROCKETS												
Comme Code and Working 1.4	Course Type:	L	Т	Р	C								
Course Category: Vertical 4	Theory	3	0	0	3								
COURSE OBJECTIVES:													
 Understand the concepts of Chemical n Identify and interpret the factors affect given ignition source. Judge the type of igniters to be designed 	ockets. eting the ignition e ed for any chemica	energy r 11 rocket	elease a	and its	mechar stem.	iism for any							

- Generate the sufficient information about the flame spreading and its mechanism in solid rocket motor.
- Assess the knowledge of solid propellant extinction in the designing process of a solid rocket motor.

UNIT 1: INTRODUCTION

Propellant Selection - Equation of State, Equilibrium, Entropy Principle, Equilibrium Conditions. Chemical Potential- Reacting Systems Versus Non-reacting Systems, Chemical Potential and Equilibrium, Evaluation of Chemical Potential. Iteration Equations - Lagrange Multipliers, Newton-Raphson Method, Constant Pressure Systems, Reduced Iteration-Equations.

UNIT 2: IGNITION & FACTORS AFFECTING IGNITION ENERGY

Introduction; Process of Self- ignition; Induction Period; Limits of Self-ignition; Forced ignition; Basic Idea of Ignition by Spark; Pilot Flames; Hot Gases and Shock Waves; Effect of Composition, Type of Electrode, Spark Duration, Pressure, Temperature, Diluents, Effect of Mixture Velocity and Turbulence on Ignition Energy.

UNIT 3: IGNITERS FOR CHEMICAL ROCKET

Igniters for Solid Rocket Motors – Role and Requirements; Classification of Igniters based on Mounting Locations and Energy Release Systems; Construction and Initiation Systems; Hardware Components; Design of Pyrotechnic and Pyrogen Igniters; Testing and Evaluation; Igniters for Liquid Propellant Engines, Hypergolic Ignition and Ignition Delay; Catalyst Induced Ignition;

UNIT 4: FLAME SPREADING AND IGNITION TRANSIENT

Physical Processes during Ignition Transient; Ignition Transient Models and Experiments; Flame Spreading over Solid Propellants, Fuels, Defects and Cracks.

UNIT 5: EXTINCTION

Controlled Termination of Thrust – Approaches; Energy Balance at Burning Surface; Dynamic Extinction by Fast Depressurization, Fast Deradiation and other Quenching Techniques, like Injection of Flame Inhibitors, Heat Sink, etc.; Theories and Experiments of Extinction.

TOTAL: 45 PERIODS

9

9

9

9

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1: Explain the basics of Chemical rockets.

CO2: Interpret different types of igniters and its applications in the propulsion system.

CO3: Design an igniter for the given chemical rocket propulsion system for the given thrust range.

CO4: Describe the concept of flame spreading and ignition transient in a solid rocket motor.

CO5: Predict the various mechanism of extinction utilized in the solid rocket motor along with their advantages and disadvantages.

CO'S PO'S&PSO'S MAPPING

	DO1	DOJ			DO5	DOG	DO7	DOQ	DOO	PO	PO	PO	PSO	PSO	PSO
	POI	PO2	PO5	PU4	FUJ	FU0	FO/	FU8	PO9	10	11	12	1	2	3
CO1	3	3	3	2	-	-	-	-	-	-	-	-	2	-	-
CO2	3	3	3	2	-	-	-	-	-	-	-	2	-	-	
CO3	3	2	1	2	-	-	-	-	1	1	1	1	2	2	1
CO4	3	2	1	2	1	1	1	-	-	-	-	1	2	-	1
CO5	3	3	3	2	1	1	1	-	1	1	1	1	2	2	1

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Holman, J.P., "Heat Transfer", McGraw Hill Book Co., Inc., New York, Sixth Edition, 1991.

2. Sachdeva,S.C., "Fundamentals of Engineering Heat and Mass Transfer", Wiley Eastern Ltd., New Delhi,1981.

3. Yunus, A.Cengel, "Heat Transfet-A Practical Approach", Tata McGraw Hill, Second edition, 2003.

4. E Rathakrishnan, "Elements of Heat Transfer", Taylor and Francis, CRC Press, 2012.

REFERENCE BOOKS:

1. Lienhard, J.H., A Heat Transfer Text Book, Prentice Hall Inc., 1981.

2. Mathur, M. and Sharma, R.P., Gas Turbine and Jet and Rocket Propulsion, Standard Publishers, New Delhi, 1988.

3. Sutton, G.P., Rocket Propulsion Elements, John Wiley and Sons, Fifth Edition, 1986

WEB RESOURCES:

1.Introduction to Rocket Propulsion: https://nptel.ac.in/courses/101104078

AE606408 - LAUNCH VEHICLE TECHNOLOGY

Course Category: Vertical 4	Course Type: Theory	L 3	Т 0	P 0	C 3	
COURSE OBJECTIVES:			3	3	5	

- To compute and analyze the various forces and moments acting on a rocket.
- To formulate the equations of motions for flight and separation phases
- To understand the combustion and propulsion systems in rocket
- To select suitable materials for the rockets and launch vehicles.
- To understand the design, performance and testing aspects.

 UNIT 1ROCKET DYNAMICS
 9

 Classification of launch vehicles and missiles – Rocket systems – Airframe components – Forces and moments acting on a rocket – Propulsion, aerodynamics, gravity – inertial and non-inertial frames – coordinate transformation – Equations of motion for three-dimensional motion through atmosphere and vacuum – numerical problems.

UNIT 2: SOLID PROPULSION AND PYROTECHNICS

Solid propellant rockets – classification – components and their design considerations – propellant grain design – grain mechanical properties – ballistics and burn rate design issues – igniter design – pyrotechnic devices and systems – classification – mechanisms and application of pyrotechnic devices in rockets and launch vehicles – Design problems in rocket systems.

UNIT 3: LIQUID PROPULSION AND CONTROL SYSTEMS

Liquid propellant rockets – classification and components – thrust chamber, feed systems, propellant tanks, turbo-pumps, types of valves and applications – their design considerations – Different bipropellant systems like cryogenics and their characteristics – pogo and slosh engine gimbal systems and thrusters for control – Thrust control systems – Design problems

UNIT 4: MULTI-STAGING OF ROCKET AND SEPARATION DYNAMICS

Navigation and guidance systems in rockets and launch vehicles – aerodynamic control systems of launch vehicles – multi-staging of rockets – vehicle optimization techniques –stage separation system – dynamics, separation techniques – rocket flight dispersion, numerical problems.

UNIT 5: DESIGN, MATERIALS AND TESTING OF ROCKETS

Design requirements and selection – performance evaluation and assessment – space environment on the selection of materials for rockets and spacecraft – material selection for specific requirements – advance materials-super alloys and composite materials –Qualification of rocket and missile systems – types of testing and evaluation of design and function.

TOTAL: 45 PERIODS

9

9

131

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1: Learn about the different systems of rockets and launch vehicles, formulation of the equation of motion and about the advanced rockets for future missions

CO2: Understand the function of the solid propellant propulsion and pyrotechnic systems and the design principles.

CO3: Understand the function of the liquid propellant propulsion and control systems and the design principles

CO4: Formulate the equation of motions for a mission and spent stage separation dynamics, understanding the principles of navigation, guidance and control of rockets and launch vehicles, and design of a multistage rocket

CO5: Understand the system design, construction, function, performance and testing aspects and to familiarize with the selection of suitable materials for different rocket systems.

CO'S PO'S&PSO'S MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO	PO 12	PSO 1	PSO	PSO 2
										10	11	12	1	2	3
CO1	3	2	2	1	2	1	-	-	-	1		1	2	1	-
CO2	3	2	1	1	2	1	-	-	-	1		1	2	1	-
CO3	3	2	1	1	2	1	-	-	-	1		1	2	1	-
CO4	3	2	1	1	2	1	-	-	-	1		1	2	1	-
CO5	2	1	1	-	1	1	-	-	-	-		1	2	1	-

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Cornelisse, J. W., "Rocket Propulsion and Spaceflight Dynamics", Pitman, London, 1982

2. Ramamurthi K., "Rocket Propulsion", Macmillan Publishers India first Ed., 2010.

3. Sutton, G.P., "Rocket Propulsion Elements", John Wiley & Sons; 8th Edition 2010

REFERENCE BOOKS:

1. George M. Siouris, "Missile Guidance and Control Systems", Springer-Verlag New York, 2004

2. Joseph Jimmerson, "The Rocket Files", Lulu.com, 2nd Ed., 201

WEB RESOURCES:

1. https://www.slideshare.net/NEERAJSHARMA814/launching-vehicles

AE606409 C	OMBUSTION TH	IEORY				
Course Category: Vertical 4	Course Type:	L	Т	P	С	
	Theory	3	0	0	3	
COURSE OBJECTIVES:						
Comprehend the basic concepts of comb	bustion					
Acquire the knowledge of chemical kine	etics and flames in	combus	tion			
• To understand the combustion in gas tur	bine engines.					
• Understand the combustion process for	various propellants	s and fue	els in ro	cket		
• To learn about the supersonic combustic	on in supersonic sp	eeds.				
						0
Classification of launch vehicles and missil	DN es – Rocket syst	tems –	Airfrai	ne con	nponent	9 is – Forces
and moments acting on a rocket – Propulsion	aerodynamics gra	wity $-$ in	nertial	and nor	_inertia	1 frames -
and moments acting on a rocket – riopulsion,	of motion	for th	roo din		al moti	on through
coordinate transformation – Equations	of motion	ioi ui	ree-um	lension	ai mou	on unough
atmosphere and vacuum – numerical problems.	• • • •		N F 1 C			TT C
Thermo-chemical equations –Heat of format	ion –Activation e	energy ·	-Mult1-	step re	actions	- Heat of
reaction -first order, second order and third orde	er reactions – Calc	ulation o	of adiab	oatic fla	me tem	perature
UNIT 2: BASICS OF CHEMICAL KINETIC	CS AND FLAME	<u>S</u>			.1 1	9
Premixed flames –Diffusion flames –measure	ement of burning	velocity	y – vai	nous m	ethods	-Effect of
various parameters on burning velocity – flame	e stability –Deflagi	ration –	Detona	tion – l	Rankine	- Hugoniot
curve –Radiation by flames.						
UNIT 3: COMBUSTION IN GAS TURBINE	ENGINES					9
Combustion in gas turbine combustion chamber	rs -Recirculation –	combus	stion ef	ficiency	, Facto	rs affecting
combustion efficiency-Fuels used for gas turb	oine combustion c	hambers	s - cor	nbustio	n stabil	ity –Flame
holder types.						
UNIT 4: COMBUSTION IN ROCKETS						9
Solid propellant grain types – types of solid p	propellant burning	in rock	et com	bustion	chamb	ers – basic
mechanism of composite propellant combustion	on – solid propell	ant burr	rate la	aws – o	criterior	1 for stable
combustion - combustion in liquid rocket engin	es – single fuel dr	oplet co	mbusti	on mod	el – cor	nbustion in
hybrid rockets						
UNIT 5: SUPERSONIC COMBUSTION						9
Introduction – supersonic combustion controlle	ed by diffusion, m	ixing ar	nd heat	convec	tion – A	Analysis of
reactions and mixing processes - supersonic bur	ming with detonati	on shoc	ks.			
				TOT	AL : 45	PERIODS
COURSE OUTCOMES: At the end of the cour	se, the student will	be able	to			
CO1: To evaluate the different systems of rocket motion and about the advanced rockets for future	ets and launch vehi re missions	icles, for	mulatio	on of th	e equati	ion of

133

CO2: To analyse and impart the combustion processes.

CO3: To evaluate the detailed mechanism of combustion Aircraft engines.

CO4: To analyse the detailed mechanism of combustion in rockets.

CO5: To analyse and impart the supersonic combustion processes.

CO'S PO'S&PSO'S MAPPING

	DO1	DOJ	DO2		DO5	DOG	DO7	DOQ	DOO	PO	PO	PO	PSO	PSO	PSO
	PUI	FO2	PO5	PO4	FUS	FU0	FO/	FUð	F09	10	11	12	1	2	3
CO1	3	2	2	1	2	1	-	-	-	1	-	1	2	1	-
CO2	3	2	1	1	2	1	-	-	-	1	-	1	2	1	-
CO3	3	2	1	1	2	1	-	-	-	1	-	1	2	1	-
CO4	3	2	1	1	2	1	-	-	-	1	-	1	2	1	-
CO5	2	1	1	_	1	1	-	-	-	-	-	1	2	1	-

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Sharma, S.P., and Chandra Mohan, "Fuels and Combustion", Tata Mc. Graw Hill Publishing Co., Ltd., New Delhi, 1987.

REFERENCE BOOKS:

1. Beer, J.M., and Chiierar, N.A. "Combustion Aerodynamics", Applied Science Publishers Ltd., London, 1981.

2. Chowdhury, R., Applied Engineering Thermodynamics, Khanna Publishers, New Delhi, 1986.

3. Loh, W.H.T., "Jet, Rocket, Nuclear, Ion and Electric Propulsion: Theory and Design, Springer Verlag, New York, 1982.

WEB RESOURCES:

1https://archive.nptel.ac.in/courses/112/106/112106299/

AE 606410 R	OCKET PROPU	LSION				
Course Category: Vertical 4	Course Type:	L	T	P	C	
COUDSE OD IECTIVES.	Theory	3	0	0	3	
• To make students understand the basis on	arating principle of	freelet	nronul	aion		
 To make students understand the basic op To make students understand the parameter rockets 	er required to estin	nate the	propul perfori	mance of	of	
• To impart knowledge to students on differ	ent types of rocke	t propul	sion sy	stems		
 To learn the concepts of rocket propulsion To expose the students on the methods of 	multi-staging of re	s and dis	sadvant hicles a	tages and on t	he	
	buynamic and jet c	ontrol II	leans			
UNIT 1: INTERNAL BALLISTICS OF ROCK	ETS					9
Reaction principle – Rocket performance parame	ters – specific imp	oulse – S	chema	tic diag	rams of	solid, liquid
and hybrid rocket propulsion systems - Equilib	orium chamber pro	essure –	Thrus	st equat	ion – C	Characteristic
velocity and thrust coefficient - Rocket performa	nce assessment					
UNIT 2: SOLID ROCKET PROPULSION						9
Selection criteria of solid propellants – Types of	solid propellants -	– Propel	lant ing	gredien	ts – Sol	id propellant
regression rate and factors influencing the re-	egression rate –	Solid p	ropella	int grai	n conf	igurations –
Progressive, regressive and neutral burning of	grains- Solid roc	ket igni	ters –	Basics	of soli	d propellant
combustion and combustion instability – Erosive	burning – Pressure	e and reg	gressio	n rate re	elationsl	nip
UNIT 3: LIQUID ROCKET PROPULSION						9
Types of liquid propellant combinations – Gas p	ressure and turbop	pump fee	d press	urizatio	n systei	ms for liquid
propellant rockets - Liquid rocket injectors and w	vater testing – Liqu	uid rock	et cooli	ing met	hods – I	Basic aspects
of thrust chamber design - Thrust control - Adv	vantages of liquid	rockets	over s	solid ro	ckets –	Combustion
instability – Cryogenic rocket engines – Propellar	nt slosh.					
UNIT 4: HYBRID ROCKET PROPULSION						9
Standard and reverse hybrid systems – Com	bustion mechanis	sm in 1	hybrid	rocket	s –Lim	itations and
applications of hybrid rockets - Solid grain co	onfigurations in h	ybrid ro	ockets-	Solid g	rain reg	gression rate
behavior along the grain length - Local regression	on rate estimation	– Mater	ial com	nbinatio	ns for h	ybrid rocket
propellants- Estimation of hybrid rocket perform	ance – Performand	ce comp	arison	with so	lid and	liquid rocket
systems						
UNIT 5: STAGING AND STEERING OF RO	CKETS					9
Need for multi-staging of rocket vehicles – differ	ent types of multi-	staging	- stagin	ng optin	nization	methods –
estimation of staging performance – stage separat	tion methods in atr	nospher	e and in	n space	-steerin	g methods
for rockets – aerodynamic control based steering	– types – merits ar	nd limita	tions –	- jet con	trol bas	ed steering
- thrust vector control methods - merits and limit	ations of these me	thods				
				ТО	TAL: 4	5 PERIODS

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1: Will explain the basic principles and develop interest to join aerospace industry as a scientist/engineer

CO2: Will be able to develop skills and apply them for conceptual designs of rocket propulsion systems as a design team member

CO3: Will be able to evaluate the performance parameters of rocket propulsion systems and can suggest alternate designs if needed

CO4: Will be able to describe the advanced technology concepts like cryogenic rocket technology and be able to create preliminary designs of solid-cryogenic multi-stage configurations

CO5: Will be able to adapt himself/herself to aerospace industry by the acquired knowledge and apply skills

in the preliminary design of rocket subsystems

CO'S PO'S&PSO'S MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO	PO 12	PSO	PSO	PSO
										10	11	12	1	2	3
CO1	3	2	2	1	2	1	-	-	-	1		1	2	1	-
CO2	3	2	1	1	2	1	-	-	-	1		1	2	1	-
CO3	3	2	1	1	2	1	-	-	-	1		1	2	1	-
CO4	3	2	1	1	2	1	-	-	-	1		1	2	1	-
CO5	2	1	1	-	1	1	-	-	-	-		1	2	1	-

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. David H. Heiser and David T. Pratt., "Hypersonic Air breathing Propulsion", AIAA Education Series, 1999.

2. Mathur, M.L. and Sharma, R.P., "Gas Turbine, Jet and Rocket Propulsion", Standard Publishers & Distributors, Delhi, 2nd edition 2014.

3. Sutton, G.P., "Rocket Propulsion Elements", John Wiley & Sons; 8th Edition 2010

REFERENCE BOOKS:

1. Martin J. Chiaverini and Kenneth K. Kuo, "Fundamentals of Hybrid Rocket Combustion and Propulsion", Progress in Astronautics and Aeronautics, 2007.

2. Ramamurthi K, "Rocket Propulsion", Macmillian publishers India Ltd, 1st edition, 2010.

WEB RESOURCES:

1.https://archive.nptel.ac.in/courses/101/104/101104078/

Vertical-5 AIRCRAFT MAINTENANCE

CURRICULUM

S. No.	Course Code	Course Title	Classification		L	Т	Р	С
1	AE606501	Airframe maintenance and repair	PE	Theory	3	0	0	3
2	AE606502	Aircraft general engineering and maintenance and practices.	PE	Theory	3	0	0	3
3	AE606503	Civil aviation regulations	PE	Theory	3	0	0	3
4	AE606504	Air traffic control (NPTEL)	PE	Theory	3	0	0	3
5	AE606505	Aircraft Engine maintenance and Repair	PE	Theory	3	0	0	3
6	AE606506	Aircraft Overhauling	PE	Theory	3	0	0	3
7	AE606507	Sensors and Instrumentation (NPTEL)	PE	Theory	3	0	0	3
8	AE606508	Helicopter Maintenance (NPTEL)	PE	Theory	3	0	0	3
9	AE606509	Air transportation and aircraft Maintenance Engineering	PE	Theory	3	0	0	3

AE606501 AIRFRAME MAINTENANCE AND REPAIR

Course Cotogony, Vertical 5	Course Type:	L	Т	Р	С	
Course Category: Vertical 5	Theory	3	0	0	3	
COURSE OBJECTIVES:						

• Acquire knowledge on welding and sheet metal repair operations and maintenance practices in aviation industry

- Gain knowledge on maintenance and repair procedures on plastics and composite structures
- Understand the Assembly & Rigging procedures and operation of Helicopter flight controls.
- Learn the inspection and maintenance of major and auxiliary systems
- Appreciate the procedure of Troubleshooting & safety practices

UNIT 1: MAINTENANCE OF AIRCRAFT

Rules and Regulations for Civil Aviation in India, Indian aircraft rules, Civil aviation requirement, CAR 66, Aircraft System, Ensuring quality welds - Welding jigs and fixtures - Soldering and brazing – laser welding. Sheet metal repair and maintenance: Selection of materials; Tools - power/hand; Repair techniques; Peening - Close tolerance fasteners; Sealing compounds; forming/shaping; Calculation of weight of completed repair; Effect of weight - change on surrounding structure. Sheet metal inspection - N.D.T. Testing. Riveted repair design - Damage investigation - Reverse engineering.

UNIT 2: PLASTICS AND COMPOSITES IN AIRCRAFT

Review of types of plastics used in airplanes - Maintenance and repair of plastic components - Repair of cracks and holes - various repairs schemes - Scopes. Cleaning of fibre reinforced plastic (FRP) materials prior to repair; Break test - Repair Schemes; FRP/honeycomb sandwich materials; laminated FRP structural members and skin panels; Tools/equipment; Vacuum-bag process. Special precautions – Autoclaves.

UNIT 3AIRCRAFT JACKING, ASSEMBLY AND RIGGING

Airplane jacking and weighing and C.G. Location. Balancing of control surfaces - Inspection maintenance. Helicopter flight controls. Tracking and balancing of main rotor. Aircraft Electrical System, Inspection of Aircraft and Basic Aircraft Design.

UNIT 4: REVIEW OF HYDRAULIC AND PNEUMATIC SYSTEM

Trouble shooting and maintenance practices - Service and inspection - Inspection and maintenance of landing gear systems. Aircraft Fuel System, Aircraft Wheels, Aircraft Brakes System- Inspection and maintenance of air-conditioning and pressurization system, water and waste system. Installation and maintenance of Instruments - handling - Testing - Inspection. Inspection and maintenance of auxiliary systems - Rain removal system - Position and warning system - Auxiliary Power Units (APUs).

UNIT 5: SAFETY PRACTICES

Hazardous materials storage and handling, Aircraft furnishing practices - Equipments. Trouble shooting. Theory and practices. Maintenance Schedule, inspection of cessna 206.

TOTAL: 45 PERIODS

9

9

9

9

COURSE OUTCOMES: At the end of the course, the student Will be able to CO1:Identify and apply the principles of function and safe operation to aircraft as per FAA

CO2: Evaluate general airframe structural repairs, the structural repair manual and structural control

programme

CO3: Know about aircraft adhesives, sealants, bonding techniques, repair procedures and the types and detection of defects in aircraft composite materials

CO4: Identify, install, inspect, fabricate and repair aircraft sheet metal and synthetic, material structures.

CO5: Understand the procedure of Troubleshooting & safety practices

CO'S PO'S&PSO'S MAPPING

	PO1	PO2	DO3		PO5	PO6	PO7	DO8		РО	РО	PO	PSO	PSO	PSO
	101	102	105	104	105	100	107	100	109	10	11	12	1	2	3
CO1	3	3	2	2	2	-	-	-	-	1	-	2	-	3	3
CO2	3	3	1	2	1	-	-	-	-	1	-	2	-	3	2
CO3	3	2	2	1	2	1	1	-	-	-	1	1	2	2	1
CO4	3	2	1	-	1	-	-	2	-	-	1	1	2	1	1
CO5	3	3	2	1	2	1	-	2	1	1	2	2	2	2	2

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Kroes, Watkins, Delp, "Aircraft Maintenance and Repair", McGraw Hill, New York, 1992

REFERENCE BOOKS:

1Brimm D.J. Bogges H.E., "Aircraft Maintenance", Pitman Publishing corp., New York, 1940

2Delp. Bent and Mckinely "Aircraft Maintenance Repair", McGraw Hill, New York, 1987.

3. Larry Reithmeir, "Aircraft Repair Manual", Palamar Books, Marquette, 1992..

WEB RESOURCES:

1. https://www.slideshare.net/DeepanBooramurthy/airframe-maintenance-and-repair.

AE606502 AIRCRAFT GENERAL ENGINEERING AND MAINTENANCE AND PRACTICESCourse Category: Vertical 5Course Type:
TheoryLTPC3003COURSE OBJECTIVES:

• To familiarize with ground handling of aircraft, Engine starting procedures and special procedures such as Mooring, jacking, levelling and towing operations

- To familiarize with ground servicing of Air conditioning and pressurization systems
- To familiarize with Shop safety and Environmental cleanliness.
- To familiarize with FAA airworthiness regulations and check list involved in each inspection of

aircraft

• To familiarize with terminology involved in aircraft hardware selection, identification of fluid line fittings.

UNIT 1: AIRCRAFT GROUND HANDLING AND SUPPORT EQUIPMENT

Mooring, jacking, levelling and towing operations – Preparation – Equipment - precautions – Engine starting procedures – Piston engine, turboprops and turbojets – Engine fire extinguishing –

Ground power units.

UNIT 2: GROUND SERVICING OF VARIOUS SUB SYSTEMS

Ground movement of aircraft –Tie down procedures –Taxiing aircraft - Air conditioning and cabin pressurization – Oxygen and oil systems – Fuel servicing and De fuelling- Ground support equipment and their maintenance.

UNIT 3: MAINTENANCE OF SAFETY

Shop safety - safety around compressed gases - Hazardous materials- Machine Tools - Flight Line safety -

Foreign Object Damage (FOD)-Fire extinguishers-Classes- Identifications-Environmental cleanliness – Precautions.

UNIT 4: INSPECTION

Process – Purpose – Types – Inspection intervals – Techniques – Checklist – Special inspection – Publications, bulletins, various manuals – FAR Air worthiness directives – Type certificate Data sheets – ATA Specifications

UNIT 5AIRCRAFT HARDWARE, MATERIALS, SYSTEM PROCESSES

Hand tools – Precision instruments – Special tools and equipments in an airplane maintenance shop Identification terminology – Specification and correct use of various aircraft hardware (i.e. nuts, bolts, rivets, screws etc) – American and British systems of specifications – Threads, gears, bearings, etc – Drills, tapes and reamers – Identification of all types of fluid line fittings. Materials, metallic and non metallic Plumbing connectors – Cables – Swaging procedures, tests, Advantages of swaging over splicing.

TOTAL: 45 PERIODS

0

9

9

COURSE OUTCOMES: At the end of the course, the student Will be able to CO1: Gained Knowledge in various ground support system for aircraft operations

CO2: Ability to carry out ground servicing of critical aircraft systems

CO3: Understand the ground handling procedures and types of equipments with special maintenance .

CO4: Ability to do shop safety, Environment cleanliness in an aircraft materials shop

CO5: Understand the FAA airworthiness regulations and the checklist involved in each inspection of aircraft

CO'S PO'S&PSO'S MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3	3	2	-	-	-	-	-	-	-	-	2	-	-
CO2	3	3	3	2	-	1	-	1	1	1	1	2	1	-	
CO3	3	3	2	2	2	-	1	-	-	-	1	-	2	1	1
CO4	3	3	2	2	2	1	1	-	1	-	-	1	2	-	1
CO5	3	3	3	2	2	1	1	-	-	1	1	1	2	1	1

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Michael J.Kroes, William A.Watkins ad Frank Delp, "Aircraft Maintenance and Repair", Tata McGraw Hill Education Private Limited, Seventh Edition, New Delhi, 2013.

2. KROES WATKINS DELP, "Aircraft Maintenance and Repair" – McGraw-Hill, New York 1993.

REFERENCE BOOKS:

1. Airframe and Power plant Mechanics, "Aircraft hand Book" Federal Aviation Administration, Shroff publishers and distributors Pvt. Ltd. New Delhi 2010.

2. A & P MECHANICS, "Aircraft hand Book" - F. A. A. Himalayan Book House, New Delhi, 1996.

3. Airframe and Power plant Mechanics, "General hand Book" Federal Aviation Administration, Shroff publishers and distributors Pvt. Ltd. New Delhi 2010.

WEB RESOURCES:

1.https://www.iare.ac.in/sites/default/files/lecture_notes/AME_LECTURE_NOTES.pdf

AE606503 CIVIL AVIATION REGULATIONS Т L Р С **Course Category: Vertical 5 Course Type: Theory** 3 0 0 3 **COURSE OBJECTIVES:** To acquaint students with airworthiness regulations and civil air worthiness requirements To familiarize students with analytical study of in- flight readings and engine reliability programmes and aircraft maintenance programmes To impart knowledge on procedures relating to registration of aircraft, issue and renewal of air worthiness certificates to aircraft. To acquaint students with aircraft maintenance engineer licensing procedures To make the students learn weight and balance control of an aircraft and material and documents to be carried on board for Indian registered aircraft. UNIT 1: Indian aircraft rules 1937 and related publications 9 Knowledge of aircraft act, 1934, aircraft rules, 1937 as far as they related to airworthiness and safety of aircraft. Knowledge of civil airworthiness requirements, aeronautical information circulars, aeronautical information publications- (relating to airworthiness), advisory circulars & A.M.E. notices (NOTAMS) by DGCA. **UNIT 2: CAR: SERIES – A** 9 C.A.R. series A – procedure for issue of civil airworthiness requirements and responsibility of operators vis-à-vis air worthiness directorate Responsibilities of operators/owners; procedure of CAR issue, amendments etc; objectives and targets of airworthiness directorate; airworthiness regulations and safety oversight of engineering activities of operations C.A.R. series "B" - issue approval of cockpit check list, MEL, CDL: Deficiency list (MEL & CDL); preparation and use of cockpit check list and emergency check list. UNIT 3: CAR -SERIES 'C' AND 'D' 9 Defect recording, monitoring, investigation and reporting Defect recording, reporting, investigation, rectification and analysis; flight report, recording of in-flight instrument, reading and reporting of flight defects and rectification of defects observed on aircraft. Aircraft maintenance programs, Reliability programs (engines); aircraft maintenance programs& their approval: on condition maintenance of reciprocating engines; TBO – revision program

UNIT 4: C.A.R. SERIES E – APPROVAL OF ORGANIZATIONS:

Approval of organizations in categories A, B, C, D, E, F, & G; requirements of infrastructure at stations other than parent base.

9

UNIT 5: C.A.R. SERIES "F" AIRWORTHINESS AND CONTINUED AIRWORTHINESS:

Procedure relating to registration of aircraft; procedure for issue / revalidation of type certification of aircraft and its engines / propellers; issue /revalidation and renewal of certificate of airworthiness; requirement for renewal of certificate of airworthiness. Suspensions of certificate of airworthiness and its subsequent revalidation.

TOTAL: 45 PERIODS

9

COURSE OUTCOMES: At the end of the course, the student Will be able to

CO1: Acquire knowledge of Airworthiness requirements for transport, military, gliders and micro light aircrafts.

CO2: Perform defect recording, reporting, investigation, rectification and analysis.

CO3: Acquire Knowledge of procedure for holding examinations, proficiency checks etc.

CO4: Perform procedure relating to registration of aircraft and fulfil the requirements for grant of civil licenses.

CO5: Acquire Knowledge of Issue/validation and renewal of Certificate of Airworthiness and to determine airworthiness of ageing aircraft.

CO'S PO'S&PSO'S MAPPING

	DO1	DOJ			DO5	DOG	DO7	DOV	DOO	PO	PO	PO	PSO	PSO	PSO
	FUI	FO2	PO5	rU4	FUS	FU0	PO/	FUð	F09	10	11	12	1	2	3
CO1	2	-	3	-	-	-	-	-	-	-	-	2	2	-	-
CO2	-	3	-	2	-	-	-	-	2	-	-	-	-	2	1
CO3	2	-	3	-	-	-	-	-	-	-	-	2	2	-	-
CO4	2	-	-	2	3	-	-	-	-	-	-	-	-	-	-
CO5	-	3	-	-	-	-	-	-	-	-	-	-	-	-	

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Civil aviation requirements with latest amendment (section 2 airworthiness) - published by DGCA,

the English book store, 17-l, Connaught circus, New Delhi. Aeronautical information circulars (relating to airworthiness) from DGCA.2009. Advisory circulars from DGCA,2009.

2."Civil Aviation Requirements with latest Amendment (Section 2 Airworthiness)" – Published by DGCA, The English Book Store, 17-1, Connaught Circus, New Delhi 2000.

REFERENCE BOOKS:

1. Aircraft manual (India) volume – latest edition, the English book store, 17-l, Connaught circus, New Delhi.2000.

WEB RESOURCES:

1.https://www.civilaviation.gov.in/sites/default/files/moca_000947.pdf

AE606504 AIR TRA	AFFIC CON	TROL	
Course Category: Vertical 5	Course Type: Theory	L T P C 3 0 0 3]
COURSE OBJECTIVES:			
• To introduce the basic of air traffic control			
• To impart knowledge about air traffic systems.			
• To gain more knowledge on flight information	systems.		
• To learn about aerodrome data.			
• To gain knowledge on navigation systems			
UNIT 1: BASIC CONCEPTS			9
Objectives of air traffic control systems - Parts of AT	C services – S	Scope and Provision of ATCs	– VFR &
IFR operations – Classification of ATS air spaces	– Various k	inds of separation - Altimet	er setting
procedures - Establishment, designation and identified	tification of	units providing ATS – Di	vision of
responsibility of control.			
UNIT 2: AIR TRAFFIC SYSTEMS			9
Area control service, assignment of cruising levels - 1	ninimum flig	ht altitude - ATS routes and s	ignificant
points - RNAV and RNP - Vertical, lateral and long	gitudinal sepa	rations based on time / distan	ice –ATC
clearances – Flight plans – position report.			
UNIT 3: FLIGHT INFORMATION SYSTEMS			9
Radar service, Basic radar terminology – Identifica	tion procedur	es using primary / secondary	y radar –
performance checks - use of radar in area and app	roach control	l services – assurance contro	l and co-
ordination between radar / non radar control - emer	gencies – Flig	ght information and advisory	service –
Alerting service – Co-ordination and emergency proceed	lures – Rules	of the air.	
UNIT 4: AERODROME DATA			9
Aerodrome data - Basic terminology – Aerodrom	e reference o	code – Aerodrome reference	; point –
Aerodrome elevation – Aerodrome reference tempera	ature – Instru	ment runway, physical Chara	cteristics;
length of primary / secondary runway - Width of run	ways – Minir	num distance between paralle	l runways
etc. – obstacles restriction			
UNIT 5: NAVIGATION AND OTHER SERVICES			9
Visual aids for navigation Wind direction indicate	or – Landing	g direction indicator – Loca	ation and
characteristics of signal area – Markings, general r	equirements -	– Various markings – Lights	s, general
requirements - Aerodrome beacon, identification bea	con – Simple	e approach lighting system an	d various
lighting systems - VASI & PAPI - Visual aids for d	enoting obsta	cles; object to be marked and	lighter –
Emergency and other services.			
		ΤΟΤΑΙ • 45 Ρ	PEDIODS
COURSE OUTCOMES: At the end of the course, the student Will be able to

CO1: Classify the requirement of air traffic control systems and types of air traffic control system

CO2: Explain in flight information systems and rules of air traffic systems.

CO3: Explore the emergency procedure and air rules followed by air traffic control systems..

CO4: Describe the aerodrome data.

CO5: Gain the information of navigation and emergency procedures in the air traffic control systems

CO'S PO'S&PSO'S MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PO	PO	PSO	PSO	PSO
									- • ·	10	11	12	1	2	3
CO1	1	2	1	-	-	-	-	-	-	I	-	1	2	-	-
CO2	1	3	-	-	3	-	-	-	-	I	-	1	3	1	-
CO3	1	3	1	1	1	-	-	-	-	-	-	-	3	1	-
CO4	1	2	-	2	3	-	-	-	-	-	-	-	2	-	-
CO5	1	1	1	-	-	-	-	-	-	-	-	-	3	1	1

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. AIP (India) Vol. I & II, "The English Book Store", 17-1, Connaught Place, New Delhi..

2Aircraft Manual (India) Volume I", Latest Edition – The English Book Store, 17-1, Connaught Place, New Delhi.

3."PANS – RAC – ICAO DOC 4444", Latest Edition, The English Book Store, 17-1, Connaught Place, New Delhi

REFERENCE BOOKS:

1. Michael S. Nolan., "Fundamentals of Air Traffic Control", Cengage Learning.

2. Wells .A-Airport Planning and Management, 4th Edition- McGraw-Hill, London-2000.

3. P S Senguttuvaan., "Fundamentals of Air Transport Management", McGraw-Hill, 2003.

WEB RESOURCES:

1. https://catsr.vse.gmu.edu/SYST460/CanadianATCStudyGuide.pdf

AE606505 AIRCRAFT E	NGINE MAINTEN	NANCE	& RE	PAIR							
Course Category: Vertical 5	Course Type:		T	P	C 2						
COURSE OBJECTIVES:	Ineory	3	U	U	3						
 To introduce fundamental aspects of piston engine maintenance and inspection procedures to students To acquaint students with damage assessment and balancing procedures of propeller To impart knowledge on various tools requirements and testing procedures of piston engine to students To familiarize students with jet engine maintenance, component inspection and damage criteria of engine components To impart knowledge on overhaul procedures and condition monitoring of the engine at various altitudes to students 											
						0					
Types of piston engines – Principles of ope	ration – Functions	of cor	nponen	$\frac{1 \text{ ENA}}{\text{ts} - M}$	NCE Iaterials	9 – starting					
procedures of piston engines – Carburetors - Inj	ection systems for s	small an	d large	engine	s – Igni	tion system					
components - Spark plug details - Engine of	perating conditions	at vario	ous alti	tudes –	- Maint	enance and					
inspection check to be carried out- Inspection and	nd maintenance and	trouble	shootin	g -Insp	ection o	f all engine					
components -Daily and routine checks-Overhaul	procedures -Compr	ression t	esting o	of cylino	ders						
UNIT 2: INSPECTION AND REPAIRING O	F PROPELLER					9					
Propeller theory -operation, construction asse	mbly and installation	ion -Pit	ch cha	nge m	echanis	m-Propeller					
axially system-Damage and repair criteria -C	General Inspection	procedu	ires -C	hecks	on con	stant speed					
propellers -Pitch setting, Propeller Balancing, B	lade cuffs, Governor	r/Propel	ler oper	ating co	ondition	is –Damage					
and repair criteria											
UNIT 3: ENGINE INSPECTION, TESTING	AND REPAIR.					9					
Symptoms of failure – Fault diagnostics – Cas	e studies of differer	nt engin	e syste	ms –To	ools and	equipment					
requirements for various checks and alignment	during overhauling	-Tools	for ins	pection	– Tool	s for safety					
and for visual inspection – Methods and instrur	nents for non destru	ictive te	sting te	chnique	es – Eq	uipment for					
replacement of part and their repair. Engine te	sting: Engine testing	g proce	dures a	nd sche	edule pr	eparation –					
Online maintenance.											
UNIT 4: GAS TURBINE ENGINE MAINTE	NANCE AND INSE	PECTIC)N			9					
Types of jet engines -Fundamental principles		ala Inla	te _cor	nnresso	ra turbi	1 (
	-Bearings and sea		15 -001	npresso	18-tu101	nes-exhaust					
section -classification and types of lubrication	-Bearings and sea and fuels-Materials	used -I	Details	of contr	rol, star	nes-exhaust					

compressor fans-Component maintenance procedures -Systems maintenance procedures -use of instruments for online maintenance -Special inspection procedures-Foreign Object Damage -Blade damage .

criteria of engine components-internal inspection of engines-compressor washing-field balancing of

UNIT 5: ENGINE OVERHAULING AND TROUBLESHOOTING PROCEDURES

Engine Overhaul procedures - Inspections and cleaning of components - Repairs schedules for overhaul -Maintenance procedures of gas turbine engines - Trouble shooting and rectification procedures -

9

Components maintenance procedures – Systems maintenance procedures.-Balancing of Gas turbine components. Trouble Shooting - Procedures for rectification – Condition monitoring– engine health monitoring and corrective methods.

TOTAL: 45 PERIODS

COURSE OUTCOMES: At the end of the course, the student Will be able to

CO1: Apply maintenance procedure to Aircraft Engines

CO2: Identify the engine components and faults

CO3: Apply non-destructive testing procedures to identify the defects

CO4: Apply overhauling procedure to new engines

CO5: Apply the compression testing of cylinders

CO'S PO'S&PSO'S MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	РО	PO	PSO	PSO	PSO
	101	102	105	104	105	100	107	100	107	10	11	12	1	2	3
CO1	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1
CO2	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1
CO3	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1
CO4	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1
CO5	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. KROES & WILD, "Aircraft Power plants", 8th Edition – McGraw Hill, New York, 2013.

2. Aircraft Inspection, Repair & Alterations 2013: Acceptable Methods, Techniques & Practices (FAA AC 43.13-1b and 43.13-2B) (FAA Handbooks Series), ASA ,US DOT-2013.

REFERENCE BOOKS:

1. TURBOMECA, "Gas Turbine Engines", The English Book Store, New Delhi, 1993.

2. UNITED TECHNOLOGIES PRATT & WHITNEY, "The Aircraft Gas turbine Engine and its Operation", (latest edition) The English Book Store, New Delhi.

3. A&P Technician General Textbook - Jeppesen Edition: 4Publisher: Jeppesen Sanderson, Inc. ISBN-13: 9780884873396

WEB RESOURCES:

1.https://www.studocu.com/in/document/anna-university/be/aero-engine-maintenance-and-repair-notes-1/7926719

AE606506 AIR	CRAFT OVERI	HAULIN	NG			
Course Category: Vertical 5	Course Type: Theory		T 0	P 0	C 3	
COURSE OBJECTIVES:		U	Ŭ	v	U	
• To impart knowledge in the field of aircra	Ift maintenance an	d groun	d contr	ol syste	ms	
• To obtain knowledge in the areas of prope	eller and its associ	ated con	nponen	ts.		
• To enhance the practical knowledge in the	e areas of engine r	naintena	nce.			
UNIT 1: PISTON ENGINES						9
Two and four stroke engines. Efficiency, factors	affecting engine p	erforma	nce. Kı	nowledg	ge of the	e function and
construction of various parts and accessories of	the engine includ	ling indu	uction,	exhaus	t and co	ooling system,
engine mounting. Engine fire detection and protection	ction systems.					
UNIT 2: PROPELLERS						9
Knowledge of purpose and functioning of parts of	of constant speed,	variable	pitch a	and feat	hering	propellers and
associated control system components.						
UNIT 3: ENGINE FUEL AND OIL SYSTEM	-					9
Construction, features of carburetors, engine fu	el and oil system	s. Char	acterist	ics of a	aviation	fuel and oil,
common sources of contamination, methods of	of checking cont	aminatio	on. Ign	ition a	nd star	ting systems:
Magnetos and ignition system components, vario	us types of engine	e starters				
UNIT 4: ENGINE INSTRUMENTS						9
Principle of operation. Superchargers -construc	tional features ar	nd princ	iples o	of opera	tion an	d function of
various types of superchargers and its related con	nponent.					
UNIT 5: ENGINE MAINTENANCE						9
Piston/Gas Turbines: Periodical servicing proc	edures, engine in	istallatio	n chec	eks, cor	ntrol rig	gging, ground
running checks, priming, bleeding and performan	ce checks. Engine	e on con	dition r	nainten	ance.	
COURSE OUTCOMES: At the end of the source	a the student Will	ha ahla t		T	OTAL:	45 PERIODS
COURSE OUTCOMES. At the end of the course			0			
CO1: Identify the engine and also able to categor	ize engine parts ar	nd other	system	IS.		
CO2: Understand the functioning of propellers.						
CO3: Understand the features of fuel and oil syste	ems in engine.					
CO4: Gain practical exposure on engine instrume	ents.					
CO5: Gain practical exposure while servicing the	engine.					

CO'S PO'S&PSO'S MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO	PSO 3
C01	1	1	1	1	2				1	10	-	12	1	<u> </u>	<u> </u>
C01	1	1	1	1	$\frac{2}{2}$	_	-		1	_	_	1	1	1	1
CO3	1	1	1	1	2	_	_	_	1	_	_	1	1	1	1
CO4	1	1	1	1	2	_	-	_	1	_	-	1	1	1	1
CO5	1	1	1	1	2	_	-	_	1	_	_	1	1	1	1
	1	1	l-low.	2 - meo	lium. 3	3 - high	, '-' no) corre	lation						J
1 10 m, 2 - meurum, 5 - mgn, - no correlation															
TEXT BOOKS :															
1.Mich	1.Michael J. Krose Thomas W.Wild, Bent, Aircraft Power Plants, 8 th edition McGraw Hill 2013														
2. E Ma	angham	and A	Peace,	Jet En	gine M	anual, l	Himala	yan Bo	oks 196	51.					
3.Civil	Aircrat	ft Inspe	ction P	rocedu	res (CA	AP 459)	, Hima	layan E	Books v	ol I &	II ,198	1			
REFEI	RENCI	E BOO	KS:												
1.Jet Ei	ngines,	Rolls F	Royce I	.td. 199	96										
2.Casar	nassa a	nd Ben	nt, Jet A	ircraft	Power	System	is, Tata	McGra	aw Hill						
3.Pratt	and Wł	nitney,	Gas Tu	rbine E	Ingine										
WEB F	RESOU	IRCES	:												
1.https:	//www.	expairc	craft.com	m/pdf/ly	ycomin	g-oh-m	anual.p	df							
2.https:	//www.	aerospo	ool.sk/d	lownloa	ds/RTC	C/AS-A	MM-0	1-000_I	[1_R1_2	201802	202.pd	f			

AE606507 SENSORS AND INSTRUMENTATION (NPTEL)												
Course Category: Vertical 5	Course Type: Theory	L 3	Т 0	P 0	C 3							
COURSE OBJECTIVES:												
• To understand the concepts of measurement	technology.											
• To learn the various sensors used to measure	various physical	paramet	ers.									
• To learn the fundamentals of signal condition	ning, data acquisit	tion and	commu	inicatio	n syste	ms used in						
mechatronics system development												
• To learn about the optical, pressure and temp	perature sensor											
• To understand the signal conditioning and D.	AQ systems											
UNIT 1: INTRODUCTION						9						
Basics of Measurement - Classification of err	rors – Error analy	vsis – St	atic and	l dynan	nic cha	racteristics						
of transducers - Performance measures of s	ensors – Classifi	ication of	of sense	ors – S	Sensor	calibration						

149

techniques – Sensor Output Signal Types.															
UNIT	2: MO	TION	, PRO	XIMI	FY AN	D RA	NGIN	G SEN	SOR	5					9
Motior	Sens	ors –	Potent	iomete	rs, Re	solver,	Enco	ders –	Optic	al, M	agneti	ic, In	ductive	e, Capa	acitive,
LVDT	– RVI	$\mathbf{DT} - \mathbf{S}$	ynchro	– Mic	rosyn,	Accele	eromet	er – GI	PS, Blu	ietootl	n, Rar	ige Se	nsors -	- RF be	eacons,
Ultrasc	onic Ra	nging,	Reflec	tive be	eacons,	, Laser	Range	e Senso	or (LID	AR)					
UNIT	3: FO	RCE,	MAGN	NETIC	C AND	HEAI	DING	SENS	ORS						9
Strain	Gage,	Load	Cell, M	Magnet	ic Ser	isors –	types,	princi	ple, re	quirer	nent a	and ac	dvantag	ges: M	agneto
resistiv	re – Ha	ll Effe	ct – Ct	irrent s	ensor]	Headin	g Sens	sors – C	Compa	ss, Gy	rosco	pe, In	clinom	eters.	
UNIT	4: OP	ΓΙCΑΙ	., PRE	SSUR	E ANI	D TEM	IPER A	ATUR	E SEN	SOR	5				9
Photo	condu	ctive of	cell, p	hoto v	oltaic,	Photo	o resis	tive, I	LDR -	- Fibe	er opt	ic ser	nsors -	- Pres	sure –
Diaphr	agm,	Bellov	vs, Pi	ezoele	ctric -	- Tac	tile se	ensors,	Tem	peratu	re –	IC,	Thern	nistor,	RTD,
Therm	ocoupl	e. Aco	ustic S	ensors	– flov	w and 1	level n	neasure	ement,	Radia	tion S	Sensor	rs - Sn	nart Se	nsors -
Film sensor, MEMS & Nano Sensors, LASER sensors.															
UNIT	5: SIG	NAL (COND	ITION	NING A	AND I	DAQ S	YSTE	MS						9
Amplif	fication	ı – Fil	tering	– Sam	ple and	d Hold	circui	its – D	ata Ac	quisit	ion: S	Single	chann	el and	multi-
channe	l data	acquis	sition -	- Data	loggir	ng - ap	plicati	ions -	Autom	obile,	Aero	space	e, Hom	e appl	iances,
Manuf	acturin	g, Env	ironme	ental m	onitori	ng									
												TO	TAL:	45 PEF	RIODS
COUR	SE OU	U TCO	MES:	At the	end of	the cou	rse, the	e stude	nt Will	be ab	le to				
COURSE OUTCOMES: At the end of the course, the student Will be able to															
CO1: Recognize with various calibration techniques and signal types for sensors.															
CO1: F	Recogn Descril	ize wit	th vario worki	ng prin	ibration nciple	n techn and ch	iques a	and sig	nal typ of for	$\frac{1}{ce, m}$	agnet	ors. ic, he	ading,	pressu	re and
CO1: F CO2: 1 temper	Recogn Descril ature, s	ize wit be the smart a	th vario working and oth	ng prin er sens	ibration nciple ors and	n techn and cl d trans	iques a naracte ducers	and sig	gnal typ of for	$\frac{1}{ce, m}$	agnet	ors.	ading,	pressu	re and
CO1: F CO2: 1 temper CO3: A	Recogn Descril ature, s Apply t	ize wit be the smart a he vari	th vario workin and oth	ng prin er sens	ibration nciple ors and nd tran	n techn and ch d transe	iques a naracte ducers rs in va	and sig	of for	ce, m tions.	agnet	ors.	ading,	pressu	re and
CO1: F CO2: 1 temper CO3: A CO4: S	Recogn Descril ature, s Apply t Select t	ize wit be the smart a he vari he app	th varie workin and oth ious set ropriat	ng prin er sens nsors a e senso	ibration nciple ors and nd tran	n techn and ch d transe nsducen	iques a naracte ducers rs in va t appli	and sig ristics arious a cations	of for applica	ce, m	agnet	ors.	ading,	pressu	re and
CO1: F CO2: 1 temper CO3: A CO4: S CO5: A	Recogn Descril ature, s Apply t Select t	ize wit be the smart a he vari he app e the si	th varie workin and oth ious se ropriat gnals f	ng prin er sens nsors a e senso rom di	ibration nciple ors and nd tran or for d	n techn and ch d trans nsducen lifferen sensor	hiques a haracte ducers rs in va t appli	and sig ristics arious a cations g Data	of for applica s acquis	tions.	agnet	ors. ic, hea	ading,	pressu	re and
CO1: F CO2: 1 temper CO3: A CO4: S CO5: A	Recogn Descril ature, s Apply t Select t Acquire	ize wit be the smart a he vari he app e the si	th varie workin and oth ious se ropriat gnals f	ng prin er sens nsors a e senso rom di	ibration nciple ors and nd tran or for d fferent	n techn and ch d transe nsducen lifferen senson	iques a haracte ducers rs in va tt appli rs using	and sig ristics arious a cations g Data	of for applica s acquis	tions.	agnet	ors. ic, he	ading,	pressu	re and
CO1: F CO2: 1 temper CO3: A CO4: S CO5: A	Recogn Descril ature, s Apply t Select t Acquire	ize wit be the smart a he vari he app e the si	th varie workin and oth ious se ropriat gnals f S MAP	ng prin er sens nsors a e sensc rom di PPING	ibration nciple ors and nd tran or for d fferent	n techn and ch d transe nsducen lifferen senson	iques a naracte ducers rs in va rs in va rs using	and sig ristics arious a cations g Data	of for applica s acquis	tions.	agnet	ns	ading,	pressu	re and
CO1: F CO2: 1 temper CO3: A CO4: S CO5: A	Recogn Descril ature, s Apply t Select t Acquire PO'S&	ize wit be the smart a he vari he app e the si	th varie workin and oth ious set ropriat gnals f S MAP	ng prin er sens nsors a e senso rom di	ibration nciple ors and nd tran or for d fferent	n techn and ch d transe nsducen lifferen senson	iques a haracte ducers rs in va it appli	and sig ristics arious a cations g Data	of for applica s acquis	tions.	agnet	Drs. ic, hea	ading,	pressu	re and
CO1: F CO2: 1 temper CO3: A CO4: S CO5: A	Recogn Descril ature, s Apply t Select t Acquire PO'S& PO1	ize wit be the smart a he vari he app e the si PSO'S	th varie workin and oth ious set ropriat gnals f S MAP PO3	ng prin er sens nsors a e senso rom di PPING PO4	ibration nciple ors and nd tran or for d fferent PO5	n techn and ch d transe nsducen lifferen senson PO6	iques a haracte ducers rs in va tt appli rs using PO7	and sig ristics arious a cations g Data PO8	nal typ of for applica s acquis PO9	tions. PO 10	agnet: aystem PO 11	PO 12	ading, PSO 1	pressu PSO 2	re and PSO 3
CO1: F CO2: 1 temper CO3: A CO4: S CO5: A CO'S 1	Recogn Descril ature, s Apply t Select t Acquire PO'S& PO1 1	ize wit be the smart a he vari he app e the si PSO'S PO2	th varie workin ind oth ious set ropriat gnals f S MAP PO3	PO4	ibration nciple ors and nd tran or for d fferent PO5 -	n techn and ch d transe isducen ifferen sensor PO6	iques a haracte ducers rs in va t appli rs using PO7 -	and sig ristics arious a cations g Data PO8	point applica applica s acquis PO9	PO 10 -	agnet: system PO 11 -	PO 12 -	ading, PSO 1 2	pressu PSO 2 1	re and PSO 3 -
CO1: F CO2: 1 temper CO3: A CO4: S CO5: A CO5: A	Recogn Descril ature, s Apply t Select t Acquire PO'S& PO1 1 1	ize wit be the smart a he vari he app e the si PO2 - 2	th varie workin and oth ious set ropriat gnals f S MAP PO3 - 2	PPING	ibration nciple ors and nd tran or for d fferent PO5 - 2	n techn and ch d transe nsducen lifferen sensor PO6 - -	iques a haracte ducers rs in va tt appli rs using PO7 - -	and sig ristics arious a cations g Data PO8 - -	point for applica acquis PO9	PO 10 -	PO 11 1	PO 12 -	PSO 1 2 2	pressu PSO 2 1 1	PSO 3 - -
CO1: F CO2: 1 temper CO3: A CO4: S CO5: A CO'S I CO'S I	Recogn Describ ature, s Apply t Select t Acquire PO'S& PO1 1 1 1	ize with be the smart and he varithe app the si PO2 - 2 2	th varie workin and oth ious set ropriat gnals f S MAP PO3 - 2 2	PO4 PO4 - 2 2	ibration nciple ors and nd tran or for d fferent PO5 - 2 2	n techn and ch d transo nsducen ifferen senson PO6 - - -	iques a haracte ducers rs in va t appli rs using PO7 - - -	and sig ristics arious a cations g Data PO8 - - -	PO9	PO 10 - -	PO 11 - 1 1	PO 12 - -	PSO 1 2 2 2	pressu PSO 2 1 1 1 1	re and PSO 3 - - -
CO1: F CO2: 1 temper CO3: A CO4: S CO5: A CO5: A CO7S 1 CO1 CO2 CO3 CO4	Recogn Describ ature, s Apply t Select t Acquire PO'S& PO1 1 1 1 1	ize with be the smart and he varithe applies the since the since PO2 - 2 2 2 2 2	th varie workin and oth ious set ropriat gnals f S MAP PO3 - 2 2 2 2	PO4 PO4 2 2 2 2	ibration nciple ors and nd tran or for d fferent PO5 - 2 2 2 2 2	n techn and ch d transe isducen ifferen sensor PO6 - - - - - -	iques a haracte ducers rs in va t appli rs using PO7 - - - - -	and sig ristics arious a cations g Data PO8 - - - -	point type of for applica s acquis PO9 - - - - - -	PO 10 - - -	PO 11 - 1 1 1	PO 12 - - -	PSO 1 2 2 2 2 2	pressu PSO 2 1 1 1 1 1	PSO 3
CO1: F CO2: 1 temper CO3: A CO4: S CO5: A CO5: A CO1 CO2 CO3 CO4 CO5	Recogn Describ ature, s Apply t Select t Acquire PO'S& PO1 1 1 1 1 1 1	ize wit be the smart a he vari he app e the si PO2 - 2 2 2 2 2	th varie workin and oth ious set ropriat gnals f S MAP PO3 - 2 2 2 2 2 2	PO4 PO4 PO4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ibration nciple ors and nd tran or for d fferent PO5 - 2 2 2 2 2 2	n techn and ch d transe ifferen sensor PO6 - - - - - - - -	iques a haracte ducers rs in va t appli rs using PO7 - - - - - - -	and sig ristics arious a cations g Data PO8 - - - - -	PO9	PO 10 - - - - - -	PO 11 - 1 1 1 1 1	PO 12 - - - - -	ading, PSO 1 2 2 2 2 2 2 2	pressu PSO 2 1 1 1 1 1 1 1 1	re and PSO 3 - - - - -

TEXT BOOKS:

1. Ernest O Doebelin, "Measurement Systems – Applications and Design", Tata McGrawHill, 2009.

2. Sawney A K and Puneet Sawney, "A Course in Mechanical Measurements and Instrumentation and

Control", Dhanpat Rai & Co, 12th edition New Delhi, 2013

3. C. Sujatha ... Dyer, S.A., Survey of Instrumentation and Measurement, John Wiley & Sons, Canada, 2001.

REFERENCE BOOKS:

1. Hans Kurt Tönshoff (Editor), Ichiro, "Sensors in Manufacturing" Volume 1, Wiley-VCH April 2001

2. John Turner and Martyn Hill, "Instrumentation for Engineers and Scientists", Oxford Science Publications, 1999.

WEB RESOURCES:

1.http://faculty.olin.edu/bstorey/isim.pdf

AE60650	8 HELICOPTER MAINT	ENANC	E (NP	TEL)		
Course Category: Vertical		L	T	P	C	
5	Course Type: Theory	3	0	0	3	
COURSE OBJECTIVES:				1		
• To introduce the concern	ts of micro electromechanic	al device	s			
• To educate on the rudim	ents of Micro fabrication tec	chniques				
• To introduce the design	concepts of micro sensors					
• To know the design con	cepts of micro actuators					
• To educate on the applic	cations of MEMS to various	disciplin	es			
UNIT 1: HELICOPTER FUN	DAMENTAL	<u> </u>	•••			
Basic directions – Ground hand	lling, Bearing – Gears.					
UNIT 2: . MAIN ROTOR SY	STEM					
Head maintenance – blade alig	nment – Static main rotor ba	lance –	Vibrati	on – Tr	acking	– Span wise
dynamic balance – Blade swee	ping –Electronic balancing -	- Dampe	ner ma	intenan	ce –Co	ounter weight
adjustment – Auto rotation adju	stments – Mast & Flight Co	ntrol Ro	tor - M	ast – St	tabilize	r, dampeners
- Swash plate flight control s	ystems collective – Cyclic	– Push j	pull tul	bes – T	orque	tubes – Bell
cranks – Mixer box – Gradient	unit control boosts – Mainter	nance &	Inspect	tion cor	ntrol rig	gging
UNIT 3: MAIN ROTOR TRA	ANSMISSIONS					
Engine transmission coupling	– Drive shaft – Maintenan	ce clutcl	n – Fre	ee whe	eling u	nits – Spray
clutch – Roller unit – Torque n	neter – Rotor brake – Mainte	enance of	f these	compo	nents –	- vibrations –
Mounting systems – Transmiss	ions.					
UNIT 4: . POWER PLANTS	& TAIL ROTORS		<u> </u>	1		·
Fixed wing power plant modified	cations – Installation – Diffe	rent type	of pov	ver plar	nt main	tenance. Tail
rotor system – Servicing tail rot	tor track – System rigging					
UNIT 5: AIRFRAMES AND	RELATED SYSTEMS		aant			
Fuselage maintenance – Amrai	ne systems – special purpos	e equipi	lent.	TO	ГАТ. /	5 DEDIODS
COURSE OUTCOMES. At th	e end of the course, the stude	nt Will b	e able t	0	1 AL, 4	5 I LAIODS
CO1: Understand the basic fun	damentals of heliconter			0		
CO2: Identify the main rotor sy	stem components					
CO3: Apply the main rotor tra	nsmissions on a helicopter					
CO4: Apply the power plants a	and tail rotors maintenance					
CO5: Understand the airframe	systems and its maintenance	2.				
CO'S PO'S&PSO'S MAPPIN	G					

	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	PS	PS	PS
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ο
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	-	-	-	I	-	-	-	-	-	-	-	1	-	-
CO 2	1	2	2	2	2	-	-	-	-	-	1	-	1	-	-
CO 3	1	2	2	2	2	-	-	-	-	-	1	-	1	-	-
CO 4	1	2	2	2	2	-	-	-	-	-	1	-	1	-	-
CO 5	1	2	2	2	2	-	-	-	-	-	1	-	1	-	-

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Chang Liu, 'Foundations of MEMS', Pearson Education Inc., 2012.

2. Stephen D Senturia, 'Microsystem Design', Springer Publication, 2000.

3. Tai Ran Hsu, "MEMS & Micro systems Design and Manufacture" Tata McGraw Hill, New Delhi, 2002.

REFERENCE BOOKS:

1. Marc Madou, —Fundamentals of Microfabricationl, CRC press 1997.

2. Sergey Edward Lyshevski, —MEMS and NEMS: Systems, Devices, and Structures CRC Press, 2002

3. Nadim Maluf," An Introduction to Micro Electro Mechanical System Design", Artech House, 2000.

WEB RESOURCES:

1.https://linguisticstudentindonesia.files.wordpress.com/2020/08/helicopter-maintenance.pdf

2.https://www.bellcustomer.com/bulletins/download?filename=212inspection_and_airworthiness_limitat ions.pdf&categoryid=139

AE606509 AIR TRANSPORTATION	N AND AIRCRAFT N	AINT	ENAN	CE EN	IGINEE	RING
Course Category: Vertical 5	Course Type:	L	Т	P	С	
Course Category: Vertical 5	Theory	3	0	0	3	
COURSE OBJECTIVES:						
• To introduce the basic of air transp	ortation.					
• To impart knowledge about airline	economics.					
• To gain more knowledge on airline	scheduling					
• To learn about aircraft reliability.						
• To gain knowledge on aircraft mai	ntenance					
						•

UNIT 1: INTRODUCTION

ICAO – The general aviation industry airline – Factors affecting general aviation, use of aircraft, airport: airline management and organisation – levels of management, functions of management, Principles of organisation planning the organisation – chart, staff departments & line departments.

UNIT 2: AIRLINE ECONOMICS

Forecasting – Fleet size, Fleet planning, the aircraft selection process, operating cost, passenger capacity, load factor etc. – Passenger fare and tariffs – Influence of geographical, economic & political factors on routes and route selection.

Fleet Planning: The aircraft selection process – Fleet commonality, factors affecting choice of fleet, route selection and Capitol acquisition – Valuation & Depreciation – Budgeting, Cost planning – Aircrew evaluation – Route analysis – Aircraft evaluation

UNIT 3: PRINCIPLES OF AIRLINES SCHEDULING

Equipment maintenance, Flight operations and crew scheduling, Ground operations and facility limitations, equipments and types of schedule – hub & spoke scheduling, advantages / disadvantages & preparing flight plans – Aircraft scheduling in line with aircraft maintenance practices.

UNIT 4: AIRCRAFT RELIABILITY

Aircraft reliability – The maintenance schedule & its determinations – Condition monitoring maintenance – Extended range operations (EROPS) & ETOPS – Ageing aircraft maintenance production.

UNIT 5: TECHNOLOGY IN AIRCRAFT MAINTENANCE

Airlines scheduling (with reference to engineering) - Product support and spares - Maintenance sharing -

Equipments and tools for aircraft maintenance - Aircraft weight control - Budgetary control.

On board maintenance systems – Engine monitoring – Turbine engine oil maintenance – Turbine engine vibration monitoring in aircraft – Life usage monitoring – Current capabilities of NDT – Helicopter maintenance – Future of aircraft maintenance.

TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the student will be able to

CO1: Classify the requirement of air transportation organizationand various departments.

CO2: Explain in airline economics and fleet planning.

CO3: Explore the principles of airlines scheduling and ground operation.

CO4: Describe the aircraft reliability.

CO5: Gain the information about technology in aircraft maintenance.

9

9

9

9 acit

CO'S PO'S&PSO'S MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1	-	-	-	-	-	-	-	-	-	-	-	1	-	-
CO2	1	2	2	2	2	-	-	-	-	-	1	-	1	-	-
CO3	1	2	2	2	2	-	-	-	-	-	1	-	1	-	-
CO4	1	2	2	2	2	-	-	-	-	-	1	-	1	-	-
CO5	1	2	2	2	2	-	-	-	-	-	1	-	1	-	-

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Chang Liu, 'Foundations of MEMS', Pearson Education Inc., 2012.

2. Stephen D Senturia, 'Microsystem Design', Springer Publication, 2000.

3. Tai Ran Hsu, "MEMS & Micro systems Design and Manufacture" Tata McGraw Hill, New Delhi, 2002.

REFERENCE BOOKS:

1. Marc Madou, -Fundamentals of Microfabrication , CRC press 1997.

2. Sergey Edward Lyshevski, —MEMS and NEMS: Systems, Devices, and Structures CRC Press, 2002

3. Nadim Maluf," An Introduction to Micro Electro Mechanical System Design", Artech House, 2000.

WEB RESOURCES:

1. https://www.iare.ac.in/sites/default/files/lecture_notes/AME_LECTURE_NOTES.pdf

 $2.https://mrcet.com/downloads/digital_notes/AE/Air\%20Transportation\%20Systems.pdf$

Vertical-6

AERO MANAGEMENT AND SAFETY

CURRICULUM

S. No.	Course Code	Course Title	Classification		L	Т	Р	С
1	AE606601	Airport Management	PE	Theory	3	0	0	3
2	AE606602	Crisis Management In Aviation Industry	PE	Theory	3	0	0	3
3	AE606603	Aircraft Production and Planning Management	PE	Theory	3	0	0	3
4	AE606604	Operational Management	PE	Theory	3	0	0	3
5	AE606605	Operation and Supply Chain Analytics	PE	Theory	3	0	0	3
6	AE606606	Essentials of Entrepreneurship (NPTEL)	PE	Theory	3	0	0	3
7	AE606607	Industrial Fire Safety (NPTEL)	PE	Theory	3	0	0	3
8	AE606608	Energy Conservation And Management (NPTEL)	PE	Theory	3	0	0	3
9	AE606609	Air Lines Operation And Scheduling	PE	Theory	3	0	0	3

AE606601 AII	RPORT MANAGEM	ENT				
Course Category: Vertical 6	Course Type:	L	Т	P	С	_
	Theory	3	0	0	3	
COURSE OBJECTIVES:						
• To impart knowledge in the fundamen	tals of planning and d	esign of	aircraf	t structu	ires	
• To make students aware of design of ru	inway and taxiways at	Airport	•			
• To make students aware of the operation	ons at Airport					
UNIT 1: INTRODUCTION						9
History, development, policy of air transport, a	aircrafts, aerodromes,	air trans	sport a	uthoritie	es, air	transport
activities, air crafts and its characteristics, airpor	t classifications as per	ICAO.				
UNIT 2: AIRPORT PLANNING						9
Regional planning-concepts and advantages, lo	ocation and planning	of airp	ort as	per ICA	AO an	d F.A.A.
recommendations, airport Elements -airfield, terr	minal area, obstruction	is, appro	ach zo	ne, zoni	ng law	s, airport
capacity, airport size and site selection, estin	nation of future air	traffic,	develop	pment o	of new	v airport,
requirements of an ideal airport layout						
UNIT 3: RUN WAY DESIGN						9
Wind rose and orientation of runway, wind cor	verage and crosswind	compor	nent, fa	ctors af	fecting	g runway
length, basic runway length, and corrections to	o runway length, run	way geo	ometric	s and r	unway	patterns
(configurations).Runway marking, threshold lim	its cross section of run	way.				
UNIT 4: TAXIWAY DESIGN						9
Controlling factors, taxiway geometric elemen	ts, layout, exit taxiwa	ay, loca	tion ar	nd geon	netrics,	holding
apron, turnaround facility. Aprons -locations, siz	e, gate positions, aircr	aft parki	ing con	figurati	ons and	1 parking
systems, hanger-site selection, planning and de	esign considerations,	Fuel sto	orage a	rea, bla	st pad	s . wind
direction indicator.						
UNIT 5: AIR TRAFFIC CONTROL AND VIS	SUAL AIDS					9
Air traffic control objectives, control system,	control network-visu	ual aids	-landin	g infor	mation	system,
airport markings and lighting						
			r	ГОТАL	: 45 P	ERIODS
COURSE OUTCOMES: At the end of the cours	e, the student will be al	ole to				
COI: Understand the fundamentals of planning a	and design of Airport s	tructure	s.			
CO2: Analyse the concepts of airport planning.						
CO3: Design the path of runway and taxiways a	t Airport.					
CO4: To make students aware of the operations	at Airport					
CO5: Familiarize with the air traffic control s	system, including the	control	netwo	rk and	comm	unication
protocols						

CO'S PO'S&PSO'S MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	2	-	-	-	2	2	2	2	2	-	2	-	3	3
CO2	2	2	-	-	2	3	2	-	2	2	2	-	-	3	2
CO3	2	2	2	-	2	2	3	2	2	2	2	2	2	2	1
CO4	2	2	-	-	2	-	-	2	2	-	-	-	2	-	1
CO5	2	2	-	-	2	-	2	2	2	1	2	1	2	2	2
	1-low, 2 - medium, 3 - high, '-' no correlation														

TEXT BOOKS:

1. Airport Planning and Management" by Alexander T. Wells and Seth B. Young Introduction to Airport Management" by George Standife.

2. A Managing Airports: An International Perspective" by Anne Graham and Peter Morrell

3. H. Schlichting, "Boundary Layer Theory", McGraw-Hill, New York, 1979.

REFERENCE BOOKS:

1. "Airport Operations" by Norman Ashford, Pierre Coutu, and John R. Beasley

2. Strategic Airport Planning" by Andrew R. Goetz and Jean-Paul Rodrigue

3. "Airports: Their Development and Operation" by Robert W. Poole Jr.

WEB RESOURCES:

1. Airport Cooperative Research Program: <u>https://www.nap.edu/organization/ACRP</u>)

AE606602 - CRISIS MANA	GEMENT IN AVIAT	FION IN	NDUS	RY		
	Course Type:	L	Т	Р	С	
Course Category: Vertical 6	Theory	3	0	0	3	-
COURSE OBJECTIVES:	-					4
• To understand the case studies of various	causes, characteristics	of crisis	s.			
• To understand the management technique	es already in vogue and	l apply t	hem to	the solu	utions of	of crisis
problems.						
UNIT 1: INTRODUCTION TO CRISIS MAN	AGEMENT					9
Crisis management; Context of the crisis in the	aircraft industry; Cris	sis mana	igemen	t basics	; Crisi	s stages;
Establishing a crisis management team; The role	of the crisis manager					
UNIT 2: CRISIS MANAGEMENT IN ACTIO	N					9
Putting crisis management into action; Psychol	ogy of crisis manager	ment de	cisions	; Emerg	gency	response
scenarios; Contingency plans; Damage control; A	A crisis management cl	hecklist				
UNIT 3: AIRLINE CRISIS MANAGEMENT						9
Context of the crisis - The airline industry;	Organizational crisis	and con	mmuni	cation;	Cause	s, Crisis

157

typologies; Coomb's typology; Characteristics of the crises; Consequences; Modeling crises; Crisis communication; Strategic communication.

UNIT 4: CRASH MANAGEMENT

Pre-crisis - Existing in pre-crisis phase, preparing for the worst: Contingency planning; Crisis-stage Disaster strike; Confronting the crisis; Post-crisis The National Transportation Board, Director General of Civil Aviation

UNIT 5: CASE STUDIES

Northwest airlines flight 255; American airlines flight 191; Delta airlines flight 191; Trans world airlines flight 800; Pan American World Airways flight 103; US Air flight 427; Value jet flight 592.

TOTAL: 45 PERIODS

9

9

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1: Understanding of crisis in aviation industry.

CO2: Develop the action plan during the emergency scenario

CO3: Analyze the airline crisis management and to make solution.

CO4: In the case of an aircraft crash, be able to demonstrate understanding of pre-crisis preparation, effective reaction during a disaster, and post-crisis management.

CO5: Apply critical thinking skills to case studies of significant incidents in the aviation sector to analyse and draw lessons for upcoming crisis management scenarios.

CO'S PO'S&PSO'S MAPPING

	DO1	DOJ	DO2		DOS	DOC	DO7		DOO	PO	PO	PO	PSO	PSO	PSO
	POI	PO2	PO3	PO4	P05	POo	PO/	P08	P09	10	11	12	1	2	3
CO1	2	2	-	-	-	-	-	-	2	2	2	-	-	-	-
CO2	2	2	-	-	-	-	-	-	2	2	2	-	-	-	-
CO3	2	2	2	-	-	-	-	-	2	2	2	-	-	1	1
CO4	2	2	2	_	_	_	_	_	2	2	2	-	2	_	1
CO5	2	2	3	-	-	-	-	-	2	2	2	-	2	1	1

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Crisis Management in the Aviation Industry" by Paul O'Sullivan and Gary L. Frazier

2. "Aviation Crisis Management: The Quest for Excellence" by Alan J. Stolzer, Carl D. Halford, and John J. Goglia

REFERENCE BOOKS:

1. Aviation Security Management" by Andrew R. Thomas and Dan W. Reilly

2 Airline Operations and Management: A Management Textbook" by Gerald N. Cook and Bruce Billig

3. Strategic Airport Planning" by Andrew R. Goetz and Jean-Paul Rodrigue

WEB RESOURCES:

1. International Air Transport Association (IATA) Crisis Response Resources :

https://www.iata.org/en/programs/safety/crisis-response/)

AE606603 AIRCRAFT PRODU	CTION AND PLA	NNINC	J MAN	AGEM	IENT	
Course Cotogony Ventical (Course Type:	L	Т	Р	С	
Course Category: vertical o	Theory	3	0	0	3	
COURSE OBJECTIVES:						

• To understand the various components and functions of production planning and control such as product planning, product scheduling and inventory

- To understand the requirements for tools and equipments for planning
- To obtain knowledge in the areas of planning and control.

UNIT 1: INTRODUCTION

Factors affecting planning-Forecasting information necessary for pre-planning-sources of information-Methods of forecasting-aircraft components requiring overhaul-repair modifications-premature-failuresproject planning-estimates of plant, machinery, buildings, manpower, materials, spare parts, time, and cost estimates

UNIT 2: MATERIALS, MACHINES AND PROCESSES

Production engineering knowledge necessary for Planning, machine tools and processes.-Materials including aircraft materials and their processing-Spare parts required for overhaul and maintenance-Ground handling equipment-testing of components and aircraft overhaul-standards for acceptance after overhaul

UNIT 3: EQUIPMENT AND TOOLS

Pre-planning required for provision of special tools, jigs, fixtures and test equipment required for overhaul and maintenance-types and description of major test equipment

UNIT 4: PRODUCTION PLANNING

Production planning function of routing, estimating and scheduling – LOB - CPM and PERT. Queuing theory, sequencing in jobs, shop scheduling, assembly line balancing-charts and graphs

UNIT 5: PRODUCTION CONTROL

Production control functions of dispatching, progressing and evaluation- Activities of progressing-shop procedures - maintenance of critical data statistics of evaluation control charts

TOTAL: 45 PERIODS

9

9

9

9

9

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1: Understand the concept of planning and forecasting.

CO2: Gain ideas in the areas of aircraft materials and processes.

CO3: Understand the production planning and control

CO4: Understand queuing theory, job sequencing, shop scheduling, and assembly line balancing

CO5: Understand the functions of production control, including dispatching, progressing, and evaluation

CO'S PO'S&PSO'S MAPPING

00.0				IIII											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PO	PO 12	PSO	PSO	PSO
										10	11	12	1	2	3
CO1	3	3	3	2	-	-	-	-	-	-	-	-	2	-	-
CO2	3	3	3	2	-	-	-	1	-	-	-	2	1	-	
CO3	3	2	1	2	-	-	-	1	1	1	1	1	2	2	1
CO4	3	2	1	2	1	1	1	1	-	-	-	1	2	-	1
CO5	3	3	3	2	1	1	1	-	1	1	1	1	2	2	1

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Thomas. L. "Production planning and control" Mc Graw Hill, Second edition 1991.

2. Jain. K. C. and Aggarwal. L. N. "Production planning and control and Industrial Management.

REFERENCE BOOKS:

1. Buffa. E. S. and Sarin. R. K. "Modern production / operations management "8th ed, John Willey and sons, 2000.

2. MacNiece. E. H. "Production forecasting, planning and control", John Willey, Third edition1986.

3. Mages. J. F. "Production planning and Inventory control", McGraw Hill, 1990

WEB RESOURCES:

1. Production Planning: https://www.lean.org/)

AE60660	4 - OPERATIONAL M	IANAG	EMEN	JT						
Course Cotegory Vertical (Course Type:	L	Т	Р	С					
Course Category: Vertical 6	Theory	3	0	0	3					
COURSE OBJECTIVES:										

• To provide a broad introduction to the field of operational management.

• To provide knowledge in tools and techniques for managing the transformation process that can lead to competitive advantage.

UNIT 1: INTRODUCTION TO OPERATIONS MANAGEMENT

9

Operations Management – Nature, Importance, historical development, transformation processes, differences between services and goods, a system perspective, functions, challenges, current priorities, recent trends; Operations Strategy – Strategic fit, framework; Supply Chain Management

UNIT 2: FORECASTING, CAPACITY AND FACILITY DESIGN Demand Forecasting - Need, Types, Objectives and Steps. Overview of Qualitative and Quantitative methods. Capacity Planning - Long range, Types, Developing capacity alternatives. Overview of sales and operations planning. Overview of MRP, MRP II and ERP. Facility Location - Theories, Steps in Selection, Location Models. Facility Layout – Principles, Types, Planning tools and techniques.. **UNIT 3: DESIGN OF PRODUCT, PROCESS AND WORK SYSTEMS** 9 Product Design - Influencing factors, Approaches, Legal, Ethical and Environmental issues. Process -Planning, Selection, Strategy, Major Decisions. Work Study - Objectives, Procedure. Method Study and Motion Study. Work Measurement and Productivity – Measuring Productivity and Methods to improve productivity.. 9 **UNIT 4: MATERIALS MANAGEMENT** Materials Management - Objectives, Planning, Budgeting and Control. Purchasing - Objectives, Functions, Policies, Vendor rating and Value Analysis. Stores Management - Nature, Layout, Classification and Coding. Inventory – Objectives, Costs and control techniques. Overview of JIT **UNIT 5: SCHEDULING AND PROJECT MANAGEMENT** Q Project Management - Scheduling Techniques, PERT, CPM; Scheduling - work centers - nature, importance; Priority rules and techniques, shopfloor control; Flow shop scheduling – Johnson's Algorithm – Gantt charts; personnel scheduling in services. **TOTAL: 45 PERIODS COURSE OUTCOMES:** At the end of the course, the student will be able to CO1: Understanding of the strategic and operational decisions in managing manufacturing and service organizations CO2: Understanding of tools and techniques involved in forecasting methods.

CO3: Design the product and various methods to improve the productivity.

CO4: Understanding of scheduling techniques

CO5: Apply skills in ensuring the good quality of grid that is essential to get reasonably accurate solutions for complex aerospace engineering problems

CO'S PO'S&PSO'S MAPPING

	DO1	DOO	DO2	DO 4	DOS	DOC	D07	DOO	DOO	РО	PO	РО	PSO	PSO	PSO
	POI	PO2	PO3	PO4	P05	PO6	PO/	PO8	P09	10	11	12	1	2	3
CO1	2	2	2	-	-	-	-	-	2	2	2	2	2	-	-
CO2	2	2	-	-	2	-	-	-	-	-	-	2	2	2	-
CO3	-	2	2	2		-	-	-	2	2	2	-	2	2	-
CO4	2	2	-	2	2	-	-	1	2	-	-	I	2	I	2
CO5	2	2	1	2	3	-	-	-	2	-	-	I	3	2	2
			1- low	, 2 - m	edium	n, 3 - h	igh, '-'	no co	orrelati	ion					

TEXT BOOKS:

1. Richard B. Chase, Ravi Shankar, F. Robert Jacobs, Nicholas J. Aquilano, Operations and Supply

Management, Tata McGraw Hill, 12th Edition, 2010..

2. Norman Gaither and Gregory Frazier, Operations Management, South Western Cengage Learning, 2002

REFERENCE BOOKS:

1. William J Stevenson, Operations Management, Tata McGraw Hill, 9th Edition, 2009.

2. Russel and Taylor, Operations Management, Wiley, Fifth Edition, 2006.

3. Kanishka Bedi, Production and Operations Management, Oxford University Press, 2004..

4. Chary S. N, Production and Operations Management, Tata McGraw Hill, Third Edition, 2008.

5. Aswathappa K and Shridhara Bhat K, Production and Operations Management, Himalaya Publishing

House, Revised Second Edition, 2008

WEB RESOURCES:

1. Introduction to Operations Management: https://hbr.org/topic/operations

2. Scheduling and Project Management: <u>https://www.poms.org/</u>)

AE606605 OPERATION	N AND SUPPLY	CHAI	N ANA		CS							
	Course Type:	L	Т	Р	С							
Course Category: Vertical 6	Theory	3	0	0	3							
COURSE OBJECTIVES:												
• To treat the subject in depth by emphas	izing on the advar	nced qu	antitat	ve mod	els and	methods in op-						
erations and supply chain management												
• Learn various analytical techniques and	d tools used in ope	erations	and su	pply ch	ain man	agement						
• Apply quantitative methods and data an	alytics to optimiz	e opera	tional a	nd supp	oly chain	n decisions.						
UNIT 1: - INTRODUCTION 9												
Descriptive, predictive and prescriptive analyti	ics, Data Driven S	upply	Chains	– Basic	s, trans	forming supply						
chains.												
UNIT 2: WAREHOUSING DECISIONS						9						
P-Median Methods - Guided LP Approach,	Greedy Drop He	uristic	s, Dyna	mic Lo	ocation	Models, Space						
Determination and Layout Methods												
UNIT 3 INVENTORY MANAGEMENT						9						
Dynamic Lot sizing Methods, Multi-Echelon	Inventory model	s, Agg	regate	[nvento	ry syste	m and LIMIT,						
Risk Analysis in Supply Chain, Risk pooling st	rategies											
UNIT 4: TRANSPORTATION NETWORK	MODELS					9						
Minimal Spanning Tree, Shortest Path Algorit	thms, Maximal Fl	ow Pr	oblems,	Transp	ortation	Problems, Set						
covering and Set Partitioning Problems Travel	ling Salesman Pro	hlem	Schedu	ling Ala	orithms	2						

9

UNIT 5: MCDM MODELS

Minimal Spanning Tree, Shortest Path Algorithms, Maximal Flow Problems, Transportation Problems, Set covering and Set Partitioning Problems, Travelling Salesman Problem, Scheduling Algorithms.

TOTAL: 45 PERIODS

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1. To enable quantitative solutions in business decision making under conditions of certainty, risk and

uncertainty.

CO2. Discuss the characteristics and the selection of traction motor.

CO3. Comprehend the vehicle-to-vehicle and autonomous technology.

CO4. Explain the networking of various modules in automotive systems, communication protocols and diagnostics of the sub systems.

CO5. Be familiar with on-board diagnostics systems.

CO'S PO'S&PSO'S MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	РО	PO	PO	PSO	PSO	PSO
	101	102	105	104	105	100	10/	100	107	10	11	12	1	2	3
CO1	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1
CO2	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1
CO3	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1
CO4	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1
CO5	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Nada R. Sanders, Big data driven supply chain management: A framework for implementing analytics and turning information into intelligence, Pearson Education, 2014.

2. Michael Watson, Sara Lewis, Peter Cacioppi, Jay Jayaraman, Supply Chain Network Design: Applying Optimization and Analytics to the Global Supply Chain, Pearson Education, 2013.

REFERENCE BOOKS:

1. Muthu Mathirajan, Chandrasekharan Rajendran, Sowmyanarayanan Sadagopan, Arunachalam Ravindran, Parasuram Balasubramanian, Analytics in Operations/Supply Chain Management , I.K. International Publishing House Pvt. Ltd., 2016

2. Gerhard J. Plenert, Supply Chain Optimization through Segmentation and Analytics, CRC Press, Taylor & Francis Group, 2014.

WEB RESOURCES:

1. supply chain analytics: vehicles:https://nptel.ac.in/courses/108106170

AE606606 - Esse	ntials of Entrepre	neurshi	p (NP	FEL)	_	
Course Category: Vertical 6	Course Type:	L	T	P	C	_
	Theory	3	0	0	3	
COURSE OBJECTIVES:						
 Understand the fundamentals of entries of entr	epreneurship. and traits essential t perations Managen emerging issues of e	to becon nent Cor entrepres	ne succo atrol for neurshi	essful e busine p.	ntrepre ess own	eneurs. ers
LINIT 1. INTRODUCTION TO ENTREE	DENIFLIDSHID					0
Entrepreneurship- Definition, Need, Scope	- Entrepreneurial S	Skill & '	Traits -	Entrep	reneur	vs. Intrapreneur;
Classification of entrepreneurs, Types of	entrepreneurs -Fac	tors aff	ecting	entrepr	eneuria	l development –
Achievement Motivation – Contributions of	f Entreprenrship to	Econom	ic Deve	elopme	nt	-
UNIT 2: BUSINESS OWNERSHIP & EN	VRIONMENT					9
Types of Business Ownership - Buines	ss Envrionemental	Factor	s – Po	olitical-	Econor	nic-Sociological-
Technological-Environmental-Legal aspects	s – Human Reosure	es Mob	ilisatio	n-Basic	s of M	anaging Finance-
Esentials of Marketing Management - Pro-	oduction and Oper	ations F	lanning	g – Sys	stems]	Management and
Administration.						
UNIT 3: FUNDAMENTALS OF TECHN	NOPRENEURSHI	Р				9
Introduction to Technopreneurship - D	Definition, Need,	Scope-	Emer	ging (Concep	ts- Principles -
Characterisitcis of a technopreneur - I	mpacts of Techno	opreneu	rship o	on Soc	iety –	Economy- Job
Opportuinites in Technopreneurship - Recen	nt trends.					
UNIT 4: APPLICATIONS OF TECHNO	PRENEURSHIP		-			9
Technology Entrepreneurship - Local, Na	tional and Global	practice	s - Int	raprene	urship	and Technology
interactions, Networking of entrepreneuria	al activities – Laun	ching -	Managi	ng		
, Technology based Product / Service entrep	preneurship Succ	ess Stor	ies of T	'echnop	reneur	s - Case Studies
UNIT 5: EMERGING TRENDS IN ENT	REPRENERUSH					9
Effective Business Management Strategie	s For Franchising	· Sub-Co	ontracti	ng- Lea	using- '	l'echnopreneurs –
Agripreneurs - Netpreneurs- Portfolio entrep	preneruship - NGO	Entrepr	eneursh	nip		
Recent Entrperneruial Develoments - Local	– National – Globa	l perspe	ctives.			
	.1 . 1 .		1 4		TOTA	L: 45 PERIODS
COURSE OUTCOMES: At the end of the COURSE OUTCOMES OU	course, the student v	viii be ai	ble to			
CO2 Understand the business ownership pa	atterns and evniron	nent				
CO3 Understand the Job opportunites in In	dustries relating to	Technor	reneur	shin		
CO4 Learn about applications of tehnopren	eurship and succes	sful tech	nonren	eure		
CO5. A coupint with the recent on 1 encouring	a tranda in anteres			curs.		
CO3. Acquaint with the recent and emergin	g trends in entrepre	nerusnij).			

CO'S	CO'S PO'S&PSO'S MAPPING														
	DO1	DOJ			DO5	DO6	DO7			PO	PO	PO	PSO	PSO	PSO
	FUI	FU2	103	r04	FUJ	FUU	r0/	rUð	109	10	11	12	1	2	3
CO1	3	2	2	2	2	-	-	-	2	-	3	2	2	2	1
CO2	2	2	2	2	2	-	-	-	2	-	-	2	2	2	1
CO3	3	2	2	2	-	-	-	-	2	-	1	2	-	2	1
CO4	3	2	2	2	2	-	-	-	2	-	2	2	2	-	1
CO5	2	2	2	2	2	-	-	-	2	-	2	2	2	2	1
1- low, 2 - medium, 3 - high, '-' no correlation															
TEXT BOOKS:															
1. Entrepreneurship: Theory, Process, and Practice" by Donald F. Kuratko (2020)															
1. Entrepreneurship: Theory, Process, and Practice" by Donald F. Kuratko (2020)															
2. Ess	entials	of En	trepren	eurshij	p and S	Small E	Busines	s Man	agemei	nt" by [Thomas	s W. Zi	mmerer	r, Norm	an M.
Scarb	orough	, and J	effrey	R. Cor	nwall	(2021)									
DEED						()									
REFE	RENC	<u>F RO(</u>	<u>JKS:</u>	C 11	. T	1 .	NT	X 7 (D	D D	•	1.D	D	T 1 1
I. "Ent	repren	eurshij	p: Succ	essful	ly Lau	nching	New	Ventur	es" by	Bruce	R. Bar	ringer	and R.	Duane	Ireland
(2019)															
2 Tech	nopre	neurshi	ip: Inn	ovatio	n and	Entre	preneu	rship i	n Higl	n Tech	nology	Indus	stries" ł	by Tho	mas N.
Duening, Robert A. Hisrich, and Michael A. Lechter (2018).															
WEB 1	WEB RESOURCES:														
1. Esse	ntials o	of Entr	eprene	urship	:://npt	tel.ac.i	n/cours	ses/108	10613	4					

AE606607 - Indu	istrial Fire Safety	v (NPTE	L)			
Course Cotogony, Venticel 6	Course Type:	L	Т	Р	С	
Course Category: Vertical o	Theory	3	0	0	3	
COURSE OBJECTIVES:						

- To enable the students to acquire knowledge of Fire and Safety Studies.
- To learn about the effect of fire on materials used for construction, the method of test for non- combustibility & fire resistance
- To learn about fire area, fire stopped areas and different types of fire-resistant doors
- To learn about the method of fire protection of structural members and their repair due to fire damage.
- To develop safety professionals for both technical and management through systematic and qualitybased study programmers

UNIT 1: INHERENT SAFETY CONCEPTS

Compartment fire-factors controlling fire severity, ventilation controlled and fuel controlled fires; Spread of fire in rooms, within building and between buildings. Effect of temperature on the properties of structural materials- concrete, steel, masonry and wood; Behavior of non-structural materials on fire- plastics, glass, textile fibres and other house hold materials

UNIT 2: PLANT LOCATIONS

9

Compartment temperature-time response at pre-flashover and post flashover periods; Equivalence of fire severity of compartment fire and furnace fire; Fire resistance test on structural elements- standard heating condition, Indian standard test method, performance criteria

UNIT 3: WORKING CONDITIONS

Fire separation between building- principle of calculation of safe distance. Design principles of fire resistant walls and ceilings; Fire resistant screens- solid screens and water curtains; Local barriers; Fire stopped areasin roof, in fire areas and in connecting structures; Fire doors- Low combustible, Non-combustible and Sparkproof doors; method of suspension of fire doors; Air-tight sealing of doors.

UNIT 4: FIRE SEVERITY AND REPAIR TECHNIQUES

Fabricated fire proof boards-calcium silicate, Gypsum, Vermiculite, and Perlite boards; Fire protection of structural elements - Wooden, Steel and RCC.. Reparability of fire damaged structures- Assessment of damage to concrete, steel, masonry and timber structures, Repair techniques- repair methods to reinforced concrete Columns, beams and slabs, Repair to steel structural members, Repair to masonry structures

UNIT 5: WORKING AT HEIGHTS

Safe Access - Requirement for Safe Work Platforms- Stairways - Gangways and Ramps-Fall Prevention & Fall Protection - Safety Belts - Safety nets - Fall Arrestors- Working on Fragile Roofs - Work Permit Systems-Accident Case Studies.

TOTAL: 45 PERIODS

COURSE OUTCOMES: At the end of the course, the student will be able to CO1: Understand the effect of fire on materials used for construction.

CO2: Understand the method of test for non-combustibility and fire resistance; and will be able to select different structural elements and their dimensions for a particular fire resistance rating of a building

CO3 To understand the design concept of fire walls, fire screens, local barriers and fire doors and able to select them appropriately to prevent fire spread.

CO4: To decide the method of fire protection to RCC, steel, and wooden structural elements and their repair methods if damaged due to fire.

CO5: Describe the safety techniques and improve the analytical and intelligence to take the right decision at right time.

CO'S PO'S&PSO'S MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	РО	PO	РО	PSO	PSO	PSO
	101	102	100	101	1 00	100	107	100	107	10	11	12	1	2	3
CO1	2	-	1	-	-	1	-	-	-	I	-	-	-	-	-
CO2	-	-	3	-	-	-	-	-	-	I	-	-	-	-	-
CO3	1	-	2	-	-	-	3	-	-	1	-	-	-	-	-
CO4	-	-	-	-	-	1	1	-	-	-	-	-	-	-	-
CO5	2	-	1	-	-	1	1	1	-	1	-	1	-	-	-
			1-low	, 2 - m	nedium	1, 3 - h	igh, '-'	no co	orrelat	ion					

9

9

9

TEXT BOOKS:

1. Roytman, M. Y,"Principles of fire safety standards for building construction". Amerind Publishing Co.

Pvt. Ltd., New Delhi, 1975

2. John A. Purkiss,"Fire safety engineering design of structures" (2nd edn.), Butterworth Heinemann, Oxford, UK,2009.

REFERENCE BOOKS:

1. Smith, E.E. and Harmathy, T.Z. (Editors),"Design of buildings for fire safety". ASTM Special Publication 685, American Society for Testing and Materials, Boston, U.S.A, 1979.

2. Butcher, E. G. and Parnell, A. C, "Designing of fire safety". JohnWiley and Sons Ltd., New York, U.S.A.1983

WEB RESOURCES:

1. Industrial Fire Safety: https://nptel.ac.in/courses/101104095

AE606608 Energy Co	onservation And	Manag	ement (NPTE	L)	
Course Category: Vertical 8	Course Type:	L	Т	Р	С	
Course Category. Vertical 8	Theory	3	0	0	3	
COURSE OBJECTIVES:						
• Evaluate and analyse the energy data	of industries					
• Analyse the energy accounting and ba	lancing					
• Evaluate and conduct energy audit a	and suggest meth	nodologi	ies for e	energy	savings	s and utilise the
available resources in optimal ways						
UNIT 1: INTRODUCTION						9
Energy - Power - Past & Present scenario o	of World; Nation	al Energ	gy consi	umption	n Data	– Environmental
aspects associated with energy utilization - E	Energy Auditing:	Need, 7	Types, N	lethodo	ology a	nd Barriers. Role
of Energy Managers. Instruments for energy a	auditing.					
UNIT 2: ELECTRICAL SYSTEMS						9
Components of EB billing – HT and LT sup	ply, Transformer	s, Cable	Sizing,	Conce	pt of C	apacitors, Power
Factor Improvement, Harmonics, Electric Mo	otors - Motor Eff	iciency	Comput	ation, I	Energy	Efficient Motors,
Illumination – Lux, Lumens, Types of lightin	g, Efficacy, LED	Lightin	g and so	cope of	Encon	in Illumination
UNIT 3: THERMAL SYSTEMS						9
Stoichiometry, Boilers, Furnaces and Thermi	ic Fluid Heaters -	- Efficie	ency con	nputati	on and	encon measures.
Steam: Distribution &U sage: Steam Traps,	, Condensate Red	covery,	Flash S	team U	Jtilizati	on, Insulators &

Refractories.													
UNIT 4: ENERGY CONSERVATION IN MAJOR UTILITIES	9)											
Pumps, Fans, Blowers, Compressed Air Systems, Refrigeration and Air Conditioning Sy	stems –	Cooling											
Towers – D.G. sets.													
UNIT 5: APPLICATIONS OF MEMS	9)											
Energy Economics – Discount Rate, Payback Period, Internal Rate of Return, Net Present Va	alue, Lif	e Cycle											
Costing –ESCO concept													
ΤΟΤΑΙ	.: 45 PE	RIODS											
COURSE OUTCOMES: At the end of the course, the student will be able to													
CO1: Remember the knowledge for Basic combustion and furnace design and selection of thermal and													
mechanical energy equipment.													
CO2 Study the Importance of Stoichiometry relations, Theoretical air required for complete c	ombusti	on.											
CO3: Skills on combustion thermodynamics and kinetics													
CO4 Apply calculation and design tube still heaters.													
CO5: Studied different heat treatment furnace.													
CO'S PO'S&PSO'S MAPPING	DCO	DIO											
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO PO PO PSO	PSO	PSO											
	2	3											
CO1 1 1	-	-											
CO2 1 2 2 2 2 - - - 1 - 1	-	-											
CO3 1 2 2 2 2 - - - 1 - 1	-	-											
CO4 1 2 2 2 2 - - - 1 - 1	-	-											
CO5 1 2 2 2 2 - - - 1 - 1	-	-											
1- low, 2 - medium, 3 - high, '-' no correlation													

TEXT BOOKS:

1. Energy Manager Training Manual (4 Volumes) available at www.energymanagertraining.com. a website administered by Bureau of Energy Efficiency (BEE), a statutory body under Ministry of Power, Government of India, 2004.

REFERENCE BOOKS:

1. Witte. L.C., P.S. Schmidt, D.R. Brown, "Industrial Energy Management and Utilisation" Hemisphere Publ, Washington, 1988

2. Callaghn, P.W. "Design and Management for Energy Conservation", Pergamon Press, Oxford, 1981

3. Turner. W.C., "Energy Management Hand book", Wiley, New York, 1982

WEB RESOURCES:

1. Energy Conservation And Management: https://nptel.ac.in/courses/117105045

AE606609 AIR LINES (OPERATION	N AND S	SCHEE	DULIN	G		
Course Category: Vertical 6	Course	Type:	L	T	P	C	-
COURSE OBJECTIVES.	Theory		3	0	0	3	
• To understand the organization details in a	air-transporta	tion.					
• To study the principles of airline scheduli	ng.						
• To understand the airline maintenance sch	nedule and me	onitoring	<u>.</u>				
UNIT 1: INTRODUCTION							9
Development of air transportation, comparison v	with other mo	des of tr	ansport	t – Role	e of IA	ΓA, ICA	AO – The
general aviation industry airline - Factors af	ffecting gene	eral avia	tion, u	se of a	aircraft,	, airpor	t: airline
management and organisation – levels of manag	ement, functi	ions of n	nanager	nent, Pi	rinciple	s of org	anisation
planning the organisation – chart, staff departmer	nts & line dep	oartments	5.				
UNIT 2: AIRLINE ECONOMICS AND FLEE	ET PLANNI	NG:					9
Forecasting - Fleet size, Fleet planning, the air	craft selectio	on proces	ss, oper	ating c	ost, pas	ssenger	capacity,
load factor etc Passenger fare and tariffs - I	Influence of	geograpł	nical, eo	conomi	с & ро	litical f	actors on
routes and route selection.							
The aircraft selection process – Fleet common	ality, factors	affectin	g choic	e of fl	eet, rou	ite sele	ction and
Capitol acquisition – Valuation & Depreciation	- Budgeting	, Cost p	lanning	– Airc	rew ev	aluation	ı – Route
analysis – Aircraft evaluation							
UNIT 3: PRINCIPLES OF AIRLINES SCHE	DULING						9
Equipment maintenance, Flight operations and c	crew scheduli	ng, Grou	und ope	erations	and fac	cility lin	nitations,
equipments and types of schedule – hub & spoke	e scheduling,	advanta	ges / di	isadvan	tages &	z prepar	ing flight
plans – Aircraft scheduling in line with aircraft m	naintenance p	ractices.					
UNIT 4: AIRCRAFT RELIABILITY							9
Aircraft reliability – The maintenance schedule	& its determi	nations -	- Condi	ition mo	onitorin	ng main	tenance –
Extended range operations (EROPS) & ETOPS -	- Ageing aircr	raft main	tenance	e produc	ction		
UNIT 5: TECHNOLOGY IN AIRCRAFT MA	INTENANO	CE					9
Airlines scheduling (with reference to engineeri	ng) – Produc	et suppor	t and s	pares –	Mainte	enance	sharing –
Equipments and tools for aircraft maintenance	– Aircraft v	weight c	ontrol	– Budg	getary c	control.	On board
maintenance systems - Engine monitoring - T	urbine engine	e oil ma	intenan	ice – T	urbine	engine	vibration
monitoring in aircraft – Life usage monitoring -	– Current caj	pabilities	s of NE	DT – He	elicopte	er maint	enance –
Future of aircraft maintenance.							
					T	Total: 4	5 periods
COURSE OUTCOMES: At the end of the course	se, the studen	t will be	able to				

CO1: Understand the concepts of organization details in air transportation.

CO2: Acquire knowledge in airline Economics and fleet planning

CO3: Understand the aircraft reliability.

CO4: understand various problems faced by airline

CO5: Understand the various technologies related to aircraft maintenance

CO'S	PO'S&	2PSO'	S MAI	PPING	(Г										
	DO1	DOJ	DO2		DO5	DOG	DO7		DOO	PO	РО	PO	PSO	PSO	PSO
	POI	PO2	P05	P04	POS	PU0	P07	PUð	P09	10	11	12	1	2	3
CO1	2	2	3	-	-	-	-	-	-	2	-	2	2	-	-
CO2	2	2	-	-	-	-	-	-	-	-	-	2	1	-	-
CO3	-	2	2	2	-	-	-	-	-	2	-	-	1	1	2
CO4	2	-	-	2	2	-	-	-	2	2	2	-	1	1	-
CO5	2	2	2	2	2	-	-	-	2	2	2	-	1	-	1
			1- low	, 2 - m	edium	, 3 - hi	gh, '-'	no co	rrelati	on					

TEXT BOOKS:

1. Fedric J.H., "Airport Management", Anybook Ltd Edition II 2000

2. Alexander T Wells, "Air Transportation", Wadsworth Publishing Company, California, 1993

REFERENCE BOOKS:

1. Gene Kropf, "Airline Procedures" McGraw-Hill; First Edition edition 1949..

2. Philip Locklin D, "Economics of Transportation". Irwin (Richard D.) Inc,U.S. 7th Revised edition 1974

3. Indian Aircraft manual" – DGCA Pub Volume I,II ,III revised edition 2003

WEB RESOURCES:

1. Air lines operation: https://nptel.ac.in/courses/101104071

Vertical-7

DIVERSIFIED COURSES GROUP 1

CURRICULUM

S. No.	Course Code	Course Title	Classification		L	Т	Р	С
1	AE606701	Design of Gas Turbine Engine Components	PE	Theory	3	0	0	3
2	AE606702	Vibration and aero elasticity (NPTEL)	PE	Theory	3	0	0	3
3	AE606703	Manufacturing process	PE	Theory	3	0	0	3
4	AE606704	Turbo machines (NPTEL)	PE	Theory	3	0	0	3
5	AE606705	Helicopter theory (NPTEL)	PE	Theory	3	0	0	3
6	AE606706	Design of Non air breathing engine	PE	Theory	3	0	0	3
7	MA606707	Mechatronics (NPTEL)	PE	Theory	3	0	0	3
8	AE606304	Project management	PE	Theory	3	0	0	3
9	AE606709	Computer aided design and analysis	PE	Theory	3	0	0	3

AE606701 DESIGN OF GAS TURBINE ENGINE COMPONENTS

Course Cotogowy Vertical 7	Course Type:	L	Т	P	С	
Course Category: Vertical 7	Theory	3	0	0	3	
COURSE OBJECTIVES:						

- To introduce basic design concepts of jet engine and estimation of required thrust to students.
- To make students familiarize with the design parameter and off design calculations.
- To give the students adequate exposure to design procedure to the rotating components of engine such as compressor and turbine along with staging.
- To make the students learn the aspects of combustion processes, flame stabilization issue, igniters design and NOx controls.
- To make students familiarize with the concept of design inlet and nozzle for various on off design conditions

Q

9

UNIT 1: GAS TURBINE ENGINE DESIGN FUNDAMENTALS

Design Process- compressible flow relationship; Constraint Analysis - Concept-Design tools- preliminary estimates; Mission analysis - Aircraft weight and fuel consumption data-Example problems on Constrain analysis, Mission analysis.

UNIT 2 : ON DESIGN AND OFF-DESING PARAMETRIC ANALYSIS9Total and static properties-corrected mass flow rate-Engine Cycle Design- One-Dimensional Through flowArea-Flow path force on components- aircraft constraint analysis, aircraft mission analysis, engineparametric (design point) analysis, engine performance (off-design) analysis, engine installation drag andsizing.

UNIT 3: DESIGN OF ROTATING COMPONENTS

Fan and Compressor Aerodynamics-Diffusion factor-Aerofoil geometry-Flow path dimension- Radial variation-Turbine Aerodynamics- Constant axial velocity-adiabatic-selected Mach number-Mean line stage Design-stage pressure ratio-Airfoil geometry-radial variation-turbine cooling-range of turbine parameters-Engine life-Design Example –for fan-compressor-turbine.

UNIT 4 : COMBUSTION CHAMBER DESIGN

Design: Combustion system components- Combustion- Chemical reactor theory. Combustor Stabilitymap-Stirringandmixing-Totalpressureloss-Fuels-Ignition-CombustionSystemsofMain Burner Design: Air partitioning- Main burner component Design: Diffuser-types of burner-inner and outer casing design-Fuel nozzle-Dome and liner-Primary zone- swirler-Secondary holes- Dilution holes-Transition duct-Design of Afterburners-Design parameters-Diffuser-Fuel injection- Ignition-Flame stabilization – Flame spread and after burner length – Examples design calculation.

UNIT 5 : INLET AND NOZZLE DESIGN

Inlets and Exhaust Nozzles Design: Elements of a Successful Inlet-Engine Integration Program- Definition of Subsonic Inlet-Engine Operational Requirements- Definition of Supersonic Inlet- Engine Operational

Requirements- Engine Impact on Inlet Design- Inlet Impact on Engine Design-Validation of Inlet-Engine System-Exhaust nozzle design-Nozzle types and their design

-Jet control methods for reduction of infrared signature.

TOTAL: 45 PERIODS

COURSE OUTCOMES: Upon completion of this course, Students will be able to

CO1: Do preliminary weight and fuel estimation for an aircraft mission..

CO2: Identify variation in parametric analysis of ON and OFF design calculations.

CO3: Explain the principle design of compressor and turbine and selection of suitable materials.

CO4: Estimate the total pressure losses and able to predict ignition delay

CO5: Determine the basic design factors affects ON and OFF design operation of inlets and nozzle on engine performance.

CO'S PO'S&PSO'S MAPPING

	DO1	DOJ	DO3		DO5	DO6	DO7	DO8	DOO	PO	PO	PO	PSO	PSO	PSO
	FOI	FO2	F03	F04	FOJ	FOO	FO/	FUð	F09	10	11	12	1	2	3
CO1	3	3	3	2	1	-	-	-	1	1	1	1	-	-	-
CO2	3	3	3	2	2	-	-	-	1	1	1	1	-	-	-
CO3	3	3	2	2	2	1	2	-	1	1	1	1	-	-	-
CO4	3	3	3	2	2	1	2	1	1	1	1	1	-	-	-
CO5	3	3	3	-	2	2	2	1	1	1	1	1	1	1	-

1-low, - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Mattingly J.D., Heiser, W.H. and Pratt D.T, 'Aircraft Engine Design', 2nd Edition, AIAA Education Series, AIAA, 2002..

2. Oates G.C.,' Aircraft Propulsion Systems Technology and Design', 1989, AIAA Education Series..

3. Saravanamuttoo H.I.H andRogers, G.F.C. "Gas Turbine Technology", Pearson Education Canada; 6th edition, 2008..

REFERENCE BOOKS:

1.Cumpsty N., "Jet Propulsion: A Simple Guide to the Aerodynamics and ThermodynamicsDesign and Performance of Jet Engines", Cambridge University Press; 2nd edition, 2003

2. Murthy S.N. and Curran E.T.,' High-Speed Flight Propulsion Systems', Volume 137, Progress in Astronautics and Aeronautics, AIAA, 1991..

3. Rathakrishnan E, 'Applied Gas Dynamics, John Wiley & Sons (Asia) Pvt Ltd, 2010.

4. Treage I.E, Aircraft Gas Turbine Engine Technology, 3rd edition, Glencoe McGraw-Hill, Inc. 1995

AE606702 VIBRATION AND AERO ELASTICITY(NPTEL) Т Р L С **Course Type: Course Category: Vertical 7** Theory 3 0 0 3 **COURSE OBJECTIVES:** To study the effect of time dependent forces on mechanical systems and to get the natural characteristics of system of single degree of freedom system To study the solving methods of multi degree of freedom systems. To introduce the approximates method to solve vibration problems. To make the student to understand the solving techniques of vibration of continuous system To study the aeroelastic effects of aircraft wings. ٠ **UNIT 1: SINGLE DEGREE OFFREEDOMSYSTEMS** 9 Introduction to simple harmonic motion, D'Alembert's principle, free vibrations - damped vibrations forced vibrations, with and without damping - support excitation - transmissibility - vibration measuring instruments. **UNIT 2: MULTI DEGREE OFFREEDOMSYSTEMS** 9 Two degrees of freedom systems - static and dynamic couplings - vibration absorber- Multi degree of freedom systems - principal co-ordinates - principal modes and orthogonal conditions - Eigen value problems - Hamilton's principle - Lagrangean equations and application. **UNIT 3: CONTINUOUS SYSTEMS** 9 Vibration of elastic bodies - Vibration of strings - longitudinal, lateral and torsional vibrations **UNIT 4: APPROXIMATE METHODS** 9

Approximate methods - Rayleigh's method - Dunkerley's method – Rayleigh-Ritz method- Holzer method

- Matrix iteration method.

UNIT 5: ELEMENTS OFAEROELASTICITY

Vibration due to coupling of bending and torsion - aeroelastic problems - Collars triangle - wing divergence

- aileron control reversal - flutter - buffeting. - elements of servo elasticity

TOTAL: 45 PERIODS

9

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1: Solve single and multi-degree vibrating systems

CO2: Distinguish types of vibrations according to dampness and particle motion.

CO3: Solve the different numerical methods to solve continuous system

CO4: Solve approximate methods to find natural frequency of a system

CO5: Examine Collars Triangle and Aero Elastic Problems

CO6: Examine the effect of Aileron reversal, flutter and wing divergence

CO'S PO'S&PSO'S MAPPING

	DO1	DOJ			DOS	DOC	DO7		DOO	РО	PO	РО	PSO	PSO	PSO
	POI	PO2	P03	P04	P05	PUo	P07	PU8	P09	10	11	12	1	2	3
CO1	3	2	1	1	1	-	-	1	-	-	1	-	2	2	1
CO2	3	2	1	1	2	-	-	-	1	1	1	1	2	2	-
CO3	3	2	1	1	2	-	-	1	1	1	1	1	3	2	1
CO4	3	2	1	-	2	-	-	-	1	1	1	1	3	2	1
C05	3	2	1	-	2	-	-	1	1	1	1	1	3	2	1
CO6	3	2	2	1	2	1	1	2	1	1	1	2	3	3	2
			1- low,	2 - me	edium,	3 - hig	h, '-' 1	no cori	elatio	n					

TEXT BOOKS:

1. Grover. G.K., "Mechanical Vibrations", 7th Edition, Nem Chand Brothers, Roorkee, India, 2003.

2. Leonard Meirovitch, "Elements of Vibration Analysis". McGraw Hill InternationalEdition, 2007

3. Thomson W T, 'Theory of Vibration with Application' - CBS Publishers, 1990.

REFERENCE BOOKS:

1. Bisplinghoff R.L., Ashely H and Hogman R.L., "Aeroelasticity", Addision Wesley Publication, New Tork, 1983.

2. en Hartog, "Mechanical Vibrations" Crastre Press, 2008..

3. TSE. F.S., Morse, I.F., Hinkle, R.T., "Mechanical Vibrations" - Prentice Hall, New York, 1984

4. William W Seto, "Mechanical Vibrations" – McGraw Hill, SchaumSeries.

5. William Weaver, Stephen P. Timoshenko, Donovan H. Yound, Donovan H. Young. 'Vibration Problems

in Engineering' - John Wiley and Sons, New York, 2001

WEB RESOURCES:

1. vibration and aero elasticity: https://nptel.ac.in/courses/1034569140

AE606703 MANUFACTURING PROCESS												
Course Category, Vertical 7	Course Type: Theory	L	Т	Р	С							
Course Category: Vertical /	Course Type: Theory	3	0	0	3							
COURSE OBJECTIVES:												
• To illustrate the working p	rinciples of various metal casting	processes										
• To learn and apply the wo	rking principles of various metal	joining pro	cesses.									

- To analyse the working principles of bulk deformation of metals.
- To learn the working principles of sheet metal forming process.
- To study and practice the working principles of plastics molding

UNIT 1: METAL CASTING PROCESSES

Sand Casting – Sand Mould – Type of patterns - Pattern Materials – Pattern allowances – Molding sand Properties and testing – Cores –Types and applications – Molding machines – Types and applications– Melting furnaces – Principle of special casting processes - Shell,investment – Ceramic mould – Pressure diecasting–lowpressure,gravity-Tiltpouring,highpressurediecasting-CentrifugalCasting–CO2casting – Defects in Sand casting process-remedies.

UNIT 2: METAL JOINING PROCESSES

Fusion welding processes – Oxy fuel welding – Filler and Flux materials-–Arc welding, Electrodes, Coatingandspecifications–GasTungstenarcwelding–Gasmetalarcwelding-Submergedarcwelding– Electro slag welding– Plasma arc welding — Resistance welding Processes -Electron beam welding – Laser beam Welding Friction welding – Friction stir welding – Diffusion welding – Thermit Welding, Weld defects – inspection &remedies – Brazing - soldering – Adhesive bonding

UNIT 3: BULK DEFORMATION PROCESSES

Hot working and cold working of metals – Forging processes – Open, impression and closed die forging –cold forging- Characteristics of the processes – Typical forging operations – rolling of metals – Types of Rolling – Flat strip rolling – shape rolling operations – Defects in rolled parts – Principle of rod and wire drawing – Tube drawing – Principles of Extrusion – Types – Hot and Cold extrusion. Introduction to shaping operations

UNIT 4: SHEET METAL PROCESSES

Sheet metal characteristics – Typical shearing, bending and drawing operations – Stretch forming operations – Formability of sheet metal – Test methods –special forming processes - Working principle and applications – Hydro forming – Rubber pad forming – Metal spinning – Introduction of Explosive forming, magnetic pulse forming, peen forming, Super plastic forming – Micro forming – Incremental forming.

UNIT 5: MANUFACTURE OF PLASTIC COMPONENTS

Types and characteristics of plastics – Molding of thermoplastics & Thermosetting polymers– working principles and typical applications – injection molding – Plunger and screw machines – Compression molding, Transfer Molding – Typical industrial applications – introduction to blow molding – Rotational molding – Film blowing – Extrusion – Thermoforming – Bonding of Thermoplastics- duff moulding.

TOTAL: 45 PERIODS

9

9

COURSE OUTCOMES: At the end of the course, the student will be able to CO1: Explain the principle of different metal casting processes.

CO2: Describe the various metal joining processes.

CO3: Illustrate the different bulk deformation processes.

CO4: Illustrate the different bulk deformation processes

C05 : Apply suitable molding technique for manufacturing of plastics components.

CO'S PO'S&PSO'S MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3		2			2	3	1	1	-	-	1	3	1	2
CO2	3		2			2	3	1	1	-	-	1	3	1	2
CO3	3		2			2	2	1	1	-	-	1	3	1	2
CO4	3		2			2	2	1	1	-	-	1	3	1	2
CO5	3		2		2	2	2	1	1	-	-	1	3	1	2

1-low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Kalpakjian. S, "Manufacturing Engineering and Technology", Pearson Education India,4th Edition, 2013.

2.P.N.Rao Manufacturing Technology Volume 1 Mc Grawhill Education 5th edition,2018.

REFERENCE BOOKS:

1.Roy. A. Lindberg, Processes and materials of manufacture, PHI / Pearson education, 2006.

2. Paul Degarma E, Black J.T and Ronald A. Kosher, Eligth Edition, Materials and Processes, in Manufacturing, Eight Edition, Prentice – Hall of India, 1997.

3. HajraChouldhary S.K and Hajra Choudhury. AK., Elements of workshop Technology, volume I and II, Media promoters and Publishers Private Limited, Mumbai, 1997

4. Sharma, P.C., A Text book of production Technology, S.Chand and Co. Ltd., 2004

AE606704 TURBO MACHINES (NPTEL)												
Course Cotogony Vertical 7	Course Type:	L	Т	Р	С							
Course Category: Vertical /	Theory	3	0	0	3							
COURSE OBJECTIVES:												
• To study the energy transfer in rotor and stator parts of the turbo machines.												
• To study the function of various elements of centrifugal fans and blowers												
• To evaluating the working and performance of centrifugal compressor.												
• To analyzing flow behavior and flow losses in axial flow compressor.												
• To study the types and working of axial and radial flow turbines												
UNIT 1: WORKING PRINCIPLES 9												
Classification of Turbomachines. Energy transfer between fluid and rotor - Euler equation and its												
interpretation. Velocity triangles. Efficiencies in Compressor and Turbine stages. Degree of reaction.												
Dimensionless parameters for Turbomachines.												
UNIT 2: CENTRIFUGAL FANS AND BLOWI	ERS					9						
Types - components - working Flow analysis i	n impeller blades-x	volute a	nd diffu	icerc V	elocity	triangles						

Types – components – working. Flow analysis in impeller blades-volute and diffusers. Velocity triangles

- h-s diagram. Stage parameters in fans and blowers. Performance characteristic curves - various losses. Fan

- bearings, drives and noise

UNIT 3: CENTRIFUGAL COMPRESSOR

Components - blade types. Velocity triangles - h-s diagram, stage work. Slip factor and Degree of Reaction. Performance characteristics and various losses. Geometry and performance calculation

UNIT 4: AXIAL FLOW COMPRESSOR

Construction details. Work done factor. Velocity triangles -h-s diagram, stage work. Workdone factor. Performance characteristics, efficiency and stage losses–Stalling and Surging. Free and Forced vortex flow.

UNIT 5: AXIAL AND RADIAL FLOW TURBINES

Axial flow turbines-Types–Elements-Stage velocity diagrams-h-s diagram, stage work-impulse and reaction stages. Compounding of turbines. Performance coefficients and losses. Radial flow turbines: Types– Elements-Stage velocity diagrams-h-s diagram, stage work Performance coefficients and losses)

TOTAL: 45 PERIODS

9

9

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1: Explain the energy transfer in rotor and stator parts of the turbo machines.

CO2: Explain the function of various elements of centrifugal fans and blowers

CO3: Evaluate the working and performance of centrifugal compressor.

CO4: Analyze flow behavior and flow losses in axial flow compressor

CO5: Explain the types and working of axial and radial flow turbines.

CO'S PO'S&PSO'S MAPPING															
	DO1	DO2	DO2	DO 4	DOS	DOC	D07	DOO	PO9	PO	PO	РО	PSO	PSO	PSO
	POI	PO2	P03	P04	P05	PU0	PO/	PU8		10	11	12	1	2	3
CO1	2	1	1	1	-	-	-	-	1	-	-	1	3	2	1
CO2	2	1	1	1	-	-	-	-	1	-	-	1	3	2	1
CO3	2	1	1	1	-	-	-	-	1	-	-	1	3	2	1
CO4	2	1	1	1	-	-	-	-	1	-	-	1	3	2	1
CO5	2	1	1	1	_	-	-	-	1	-	-	1	3	2	1

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Ganesan, V., "Gas Turbines", 3rd Edition, Tata McGrawHill, 2011.

2. Yahya, S.M., "Turbines, Compressor and Fans", 4th Edition, Tata McGraw Hill, 2011.

REFERENCE BOOKS:

1. Dixon, S.L., "Fluid Mechanics and Thermodynamics of Turbomachinery", 7th Edition, Butterworth-Heinemann, 2014.

2. Gopalakrishnan. G and Prithvi Raj. D," A Treatise on Turbomachines", Scitech Publications (India) Pvt. Ltd., 2nd Edition,2008

3. Lewis, R.I., "Turbomachinery Performance Analysis" 1st Edition, Arnold Publisher, 1996

4. Saravanamutto, Rogers, Cohen, Straznicky., "Gas Turbine Theory" 6th Edition, Pearson Education Ltd,2009

5. Venkanna, B.K., "Fundamentals of Turbomachinery", PHI Learning Pvt. Ltd., 2009

WEB RESOURCES:

1. Turbo machines: https://nptel.ac.in/courses/1031073458

AE606705 HELICOPTER THEORY (NPTEL)												
Course Category: Vertical 7	Course Type: Theory	L 3	T 0	P 0	C 3							
COURSE OBJECTIVES:												
The principals involved in helicopt	ters											
• The performance and stability aspects of Helicopter under different operating condition												
Understand aerodynamics of rotor blades												
• Dynamic stability of helicopters												
Considerations of helicopter design												
UNIT I: INTRODUCTION Helicopter as an aircraft, Basic features, Layout, Generation of lift, Main rotor, Gearbox, tail rotor												
plant, considerations on blade, flapping and feathering, Rotor controls and various types of rotor, Blade												
loading, Effect of solidity, profile drag, compressibility etc., Blade area required, number of Blades, Blade												
form, Power losses, Rotor efficiency												
UNIT 2: AERODYNAMICS OFROTOR BLADE						9						
Aerofoil characteristics in forward flight, Hovering	and Vortex rin	g state,	Blade s	stall, m	aximum	lift of the						
helicopter calculation of Induced Power, High speed	limitations; para	asite dra	g, powe	er loadi	ng, grou	ind effect.						
UNIT 3: POWER PLANTS ANDFLIGHTPERFO	DRMANCE					9						
Piston engines, Gas turbines, Ramjet principle, Com	parative perfor	mance, 1	Horsepo	ower re	quired,	Range and						
Endurance, Rate of Climb, Best Climbing speed, Ceiling in vertical climb, Autorotation												
UNIT 4: STABILITYAND CONTROL												
Physicaldescriptionof effects of disturbances, Stick fixed Longitudinal and lateral dynamic stability,												
lateralstabilitycharacteristics,controlresponse.Differencesbetweenstabilityandcontrolofairplane and helicopter.												
UNIT 5: ROTOR VIBRATIONS9												
Dynamic model of the rotor, Motion of the rigid blades, flapping motion, lagging motion, fathering motion,												
Properties of vibrating system, phenomenon of vibration, fuselage response, vibration absorbers,												

Measurement of vibration in flight. Rotor Blade Design: General considerations, Airfoil selection, Blade construction, Materials, Factors affecting weight and cost, Design conditions, Stress analysis.

TOTAL: 45 PERIODS

COURSE OUTCOMES: At the end of the course, the student will be able to CO1: Make use of Aerodynamics calculation of Rotor blade

CO2: Apply stability and control characteristics of Helicopter

CO3: Experiment with control Rotor vibration.

CO4: Apply Momentum and simple blade element theories to helicopter's rotor blades

CO5: Analyse the power requirements in forward flight and associated stability problems of helicopter

CO'S PO'S&PSO'S MAPPING

POI	DO1	DOO	D2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	РО	РО	РО	PSO	PSO	PSO
		PO2								10	11	12	1	2	3
CO1	2	-	-	-	-	-	-	-	-	-	-	-	2	-	-
CO2	2	-	1	-	-	-	1	-	1	-	-	-	2	-	-
CO3	3	1	-	-	-	-	1	-	1	1	2	1	3	2	1
CO4	3	1	-	-	-	-	-	-	1	-	-	-	2	1	1
CO5	2	-	-	-	-	-	-	-	-	-	-	-	2	2	1

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. John Fay, "The Helicopter and How It Flies", Himalayan Books1995

2. Lalit Gupta, "Helicopter Engineering", Himalayan Books New Delhi1996

REFERENCE BOOKS:

1. Joseph Schafer, "Basic Helicopter Maintenance", Jeppesen1980

2. R W Prouty, Helicopter Aerodynamics, Phillips Pub Co,1993.

WEB RESOURCES:

1. Helicopter theory: http://www.nitttrc.edu.in/nptel/courses/video/1121094579/L42.html
AE606706 DESIGN OF NON AIR BREATHING ENGINE

Course Category: Vertical 8

Course	L	Т	P	С	
Type: Theory	3	0	0	3	
Theory					

COURSE OBJECTIVES:

- To establish fundamental approach and application of jet engine components.
- To learn about the analysis of flow phenomenon and estimation of thrust developed by jet engine.
- To introduce about the application of various equations in Gas Turbine Engines.
- To learn the concepts of jet engine combustion chambers.
- To acquire knowledge on compressors and turbines

UNIT 1: PRINCIPLES OF AIRBREATHING ENGINES

Operating principles of piston engines – thermal efficiency calculations – classification of piston engines illustration of working of gas turbine engines – factors affecting thrust – methods of thrust augmentation – performance parameters of jet engines

UNIT 2: JET ENGINE INTAKES ANDEXHAUSTNOZZLES

Ram effect, Internal flow and Stall in subsonic inlets – relation between minimum area ratio and eternal deceleration ratio – diffuser performance – modes of operation - supersonic inlets – starting problem on supersonic inlets – shock swallowing by area variation – real flow through nozzles and nozzle efficiency – losses in nozzles – ejector and variable area nozzles - interaction of nozzle flow with adjacent surfaces – thrust reversal.

UNIT 3: JET ENGINE COMBUSTION CHAMBERS

Chemistry of combustion, Combustion equations, Combustion process, classification of combustion chambers – combustion chamber performance – effect of operating variables on performance – flame stabilization, Cooling process, Materials, Aircraft fuels, HHV, LHV, Orsat apparatus

UNIT 4: JET ENGINE COMPRESSORS

Euler's turbo machinery equation, Principle operation of centrifugal compressor, Principle operation of axial flow compressor– Work done and pressure rise – velocity diagrams – degree of reaction – free vortex and constant reaction designs of axial flow compressor – performance parameters axial flow compressors– stage efficiency

UNIT 5: JET ENGINE TURBINES

Principle of operation of axial flow turbines– limitations of radial flow turbines- Work done and pressure rise – Velocity diagrams – degree of reaction – constant nozzle angle designs – performance parameters of axial flow turbine– turbine blade cooling methods – stage efficiency calculations – basic blade profile design considerations – matching of compressor and turbine.

TOTAL: 45 PERIODS

9

9

0

9

COURSE OUTCOMES: On completion of the course, the student is expected

CO1. To be able to apply control volume and momentum equation to estimate the forces produced by aircraft propulsion systems.

CO2. To be able to describe the principal figures of merit for aircraft engine.

CO3. To be able to describe the principal design parameters and constraints that set the performance of gas turbine engines.

CO4. To apply ideal and actual cycle analysis to a gas turbine engine to relate thrust and fuel burn to component performance parameters.

CO5. Understanding the workings of multi stage compressor or turbine, and to be able to use velocity triangles and the Euler Turbine Equation to estimate the performance of a compressor or turbine stage.

CO'S I	CO'S PO'S&PSO'S MAPPING														
	DO1	DOJ	DO2		DOS	DOC	DO7		DOO	PO	PO	PO	PSO	PSO	PSO
	POI	PO2	POS	PU4	POS	PU0	P07	PU8	P09	10	11	12	1	2	3
CO1	3	1	1	2	3	1	1	1	2	3	1	1	3	1	1
CO2	3	2	2	2	3	2	3	2	2	3	1	1	3	1	1
CO3	3	3	3	3	2	1	2	1	3	2	1	1	3	1	1
CO4	3	3	3	2	3	2	2	1	2	1	2	1	3	1	1
CO5	3	3	2	2	3	1	1	1	1	1	1	1	3	1	1
	1- low, 2 - medium, 3 - high, '-' no correlation														

TEXT BOOKS:

1. Cohen, H. Rogers, G.F.C. and Saravanamuttoo, H.I.H. "Gas Turbine Theory", Pearson Education Canada; 6th edition,2008.

2. Mathur, M.L.and Sharma, R.P., "Gas Turbine, Jetand Rocket Propulsion", Standard Publishers & Distributors, Delhi, 2nd edition 2014.

REFERENCE BOOKS:

1. Oates, G.C., "Aero thermodynamics of Aircraft Engine Components", AIAA Education Series, New York, 1985.

WEB RESOURCES:

1. https://onlinecourses.nptel.ac.in/noc23_ae11/preview

MA606707 ME	CHATRONICS	(NPTEI	L)			
Course Category: Vertical 7	Course Type:	L	Т	Р	С	
	Theory	3	0	0	3	
The main learning objective of this course is to	prepare the studer	nts for				
Selecting sensors to develop maghetronics		101.				
• Selecting sensors to develop mechatronics	systems.					
• Explaining the architecture and timing	diagram of mich	roproces	sor, a	nd also	o interp	oret and
develop programs.						
• Designing appropriate interfacing circuits t	to connect I/O dev	ices with	h micro	oproces	sor.	
• Applying PLC as a controller in mechatron	nics system.					
• Designing and develop the apt mechatronics sy	ystem for an applica	tion				
LINET 1. INTRODUCTION AND CENCODE						0
Introduction to Mechatronics – Systems – Nee	ed for Mechatron	ics – Ei	mergin	g areas	of Me	echatronics –
Classification of Mechatronics Sensors and Tu	ransducers: Static	and Dr	mamic	Chara	otoristic	es of Sensor
Potentiameters LVDT Conscitutes Sensors	Strain Causaa	Eddy Cy		Chara		Effect Sensor
Forentiometers – LVD1 – Capacitance Sensors –	- Strain Gauges –	Eddy C	urrent	Sensor	– Hall I	Effect Sensor
– Temperature Sensors – Light Sensors.						
UNIT 2: 8085 MICROPROCESSOR	a of 8085 Add	raccina	Moder	Inc	ruction	9 set Timing
diagram of 8085	e of 8085 – Add	ressing	widues	5 – 1115	liuction	set, Thinng
LINUT 2. DECCRAMMADI E DEDIDUEDAL						0
Introduction – Architecture of 8255, Keyboard	INTERFACE I Interfacing, LEI) displa	ıy – Ir	nterfaci	ng, AD	C and DAC
Interface, Temperature Control – Stepper Motor (Control – Traffic C	Control I	nterfac	e		
UNIT 4: PROGRAMMABLE LOGIC CONTR	ROLLER					9
Introduction – Architecture – Input / Output Pro	ocessing – Program	nming w	vith Ti	mers, C	ounters	and Internal
relays – Data Handling – Selection of PLC.						
UNIT 5: ACTUATORS AND MECHATRONI	CS SYSTEM DE	SIGN				9
TypesofStepperandServomotors-Construction-W	/orkingPrinciple-(Characte	ristics,	Stage	s of I	Mechatronics
Design Process - Comparison of Traditional a	nd Mechatronics	Design	Conce	pts wit	h Exan	nples – Case
studies of Mechatronics Systems – Pick and Place	e Robot – Engine	Manager	ment sy	ystem –	Autom	atic Car Park
Barrier.						
				ТО	TAL: 4	5 PERIODS
COURSE OUTCOMES: Upon successful comp	letion of the cours	e, studer	nts sho	uld be a	ble to	
COI: Select sensors to develop mechatronics syst	tems.					
CO2: Explain the architecture and timing dia	igram of micropr	ocessor,	and	also in	terpret	and develop
programs.						
CO3: Design appropriate interfacing circuit	ts to connect I/O d	evices w	vith mi	croproc	essor.	

CO4: Apply PLC as a controller in mechatronics system.

CO5: Design and develop the apt mechatronics system for an application

CO'S I	PO'S&	PSO'S	MAPE	PING												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	
CO1	3	2	1	3	-	2	-	-	-	-	-	2	3	2	3	
CO2	3	2	1	3	-	2	-	-	-	-	-	2	3	2	3	
CO3	3	2	1	3	-	2	-	-	-	-	-	2	3	2	3	
CO4	3	2	1	3	-	2	-	-	-	-	-	2	3	2	3	
CO5	3	2	1	3	-	2	-	-	-	-	-	2	3	2	3	

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Bolton W., "Mechatronics", Pearson Education, 6th Edition, 2015.

2.Ramesh S Gaonkar, "Microprocessor Architecture, Programming, and Applications with the 8085", Penram International Publishing Private Limited, 6th Edition,2013

REFERENCE BOOKS:

1. BradleyD.A., DawsonD., BuruN.C. and LoaderA.J., "Mechatronics", Chapman and Hall, 1993.

2. Davis G. Alciatore and Michael B. Histand, "Introduction to Mechatronics and Measurement systems", McGraw Hill Education, 2011.

3. Devadas Shetty and Richard A. Kolk, "Mechatronics Systems Design", Cengage Learning, 2010

4.Nitaigour Premchand Mahalik, "Mechatronics Principles, Concepts and Applications", McGraw Hill Education, 2015

5.Smaili. A and Mrad. F, "Mechatronics Integrated Technologies for Intelligent Machines", Oxford University Press,2007

WEB RESOURCES:

1. Mechatronics: https://nptel.ac.in/courses/101104071

AE606304 P	PROJECT MANA	GEMEN	T			
Course Category: Vertical 7	Course Type: Theory		T	P 0	C 3	-
COURSE OBJECTIVES	Пеогу	5	U	U	5	
1. To impart knowledge and gain ideas in the	e methods and quan	titative t	ools us	ed to ef	fective	ly plan, or-
ganize, and control construction projects.	-					• •
2. To provide efficient management methods	s revealed through p	oractice a	and res	earch.		
3. To provide hands-on, practical project ma	inagement knowleds	e from o	on-site	situatio	ns and	field trips.
real real real real real real real real		·				
UNIT 1: Introduction to Project						9
Definition of a Project, Sequence of Activities	s, Unique activities,	Comple	x Acti	vities, C	Connect	ed Activities,
One Goal, Specified Time, Within Budget	, According to Sp	ecificati	on. De	efining	a Prog	gram, Project
parameters: Scope, Quality, Cost, Time, H	Resources; The sco	ope tria	ngle:	Гime, (Cost, a	and Resource
Availability, Project Classification.						
UNIT 2: Project Management						9
Principles of Project Management: Defin	ning, Planning, E	xecuting	g, Cor	ntrolling	, Clos	sing; Project
Management Life Cycle: Phases of Proje	ct Management, I	Levels of	of Pro	ject M	anagen	nent; Quality
Management: Continuous Quality Manage	ment Model, Proc	cess Qu	ality	Manage	ment	Model; Risk
Management, Risk Analysis; Relationship bet	ween Project Manag	gement a	nd oth	er Meth	odolog	ies.
UNIT 3: Project Activities						9
Work Breakdown Structure, Uses of WBS, C	Benerating the WBS	: Top-D	own/ I	Bottom-	Up Ap	proach, WBS
for Small Projects, Intermediate WBS for la	rge projects; Criter	ia to Te	st for	Comple	eteness	in the WBS:
Measurable Status, Bounded, Deliverable,	Cost/Time Estimat	e, Acce	ptable	Durati	on Lin	nits, Activity
Independence; Approaches to Building the WI	BS: various approac	hes, Rep	oresenti	ing WB	S.	
UNIT 4: Network Analysis – PERT						9
Introduction to Project Evaluation and Re-	view Technique, E	Event, A	ctivity	, Dum	my, N	etwork rules,
Graphical guidelines for network, Common	partial situations in	n networ	rk, nur	nbering	the ev	vents, Cycles;
Developing the Network, Planning for netw	work construction,	modes of	of netv	work co	onstruct	tion, steps in
developing network, hierarchies; Time Estima	ates in PERT, Uncer	rtainties	and us	e of PE	RT, Ti	me estimates,
Frequency distribution, Mean, Variance & s	standard deviation,	Probabil	ity dis	tributio	n, Beta	u distribution,
Expected time; Time Computations in PERT,	, Earliest expected t	ime, For	rmulati	on for '	ΓE, La	test allowable
occurrence time, Formulation for TL, Comb	vined tabular compu	utations	for TE	E, TL;	Slack,	Critical Path,
Probability of meeting schedule date.						
UNIT 5: Network Analysis - CPM						9
Introduction to Critical Path Method, Proce	dure, Networks, Ac	ctivity ti	me es	timate,	Earlies	t event time,

Latest allowable occurrence time, Combined tabular computations for TE and TL, Start & Finish times of

activity, Float, Critical activities & Critical path. Crashing of project network, Resource levelling and Resource allocation.

TOTAL: 45 PERIODS

COURSE OUTCOMES: At the end of the course, the student will be able to CO1: Interpret the basics of micro electromechanical systems including their applications and advantages

CO2: Recognize the use of materials in micro fabrication and describe the fabrication processes including surface micromachining, bulk micromachining and LIGA.

CO3: Comprehend the design concepts of micro sensors.

CO4: Analyze the key performance aspects of electromechanical transducers including actuators

CO5: Apply MEMS to various disciplines

CO'S PO'S&PSO'S MAPPING

	DO1	DO2	DO2		DO5	DOG			DOO	PO	PO	PO	PSO	PSO	PSO
	FUI	FO2	FUS	r04	FUS	FU0	r07	FU8	F09	10	11	12	1	2	3
CO1	1	-	-	-	-	-	-	-	-	-	-	-	1	-	-
CO2	1	2	2	2	2	-	-	-	-	-	1	-	1	-	-
CO3	1	2	2	2	2	-	-	-	-	-	1	-	1	-	-
CO4	1	2	2	2	2	-	-	-	-	-	1	-	1	-	-
CO5	1	2	2	2	2	-	-	-	-	-	1	-	1	-	-

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Chang Liu, 'Foundations of MEMS', Pearson Education Inc., 2012.

2. Stephen D Senturia, 'Microsystem Design', Springer Publication, 2000.

3. Tai Ran Hsu, "MEMS & Micro systems Design and Manufacture" Tata McGraw Hill, New Delhi, 2002.

REFERENCE BOOKS:

1. Marc Madou, -Fundamentals of Microfabrication , CRC press 1997.

2. Sergey Edward Lyshevski, --MEMS and NEMS: Systems, Devices, and Structures CRC Press, 2002

3. Nadim Maluf," An Introduction to Micro Electro Mechanical System Design", Artech House, 2000.

AE606709 - COMPUT	ER AIDED DES	IGN A	ND AN	ALYS	IS	
Course Category: Vertical 7	Course Type:	L	Т	Р	C	
	Theory	3	0	0	3	
To familiarize with						
1. Concepts of modelling of 2D and 3D	geometrical elem	ents.				
2. Concepts of computer graphics.	6					
3 CAD Packages and its features						
4 Indian standards on drawing practice	s and standard co	nnonen	its			
5 the effects of real world conditions of	n a part or assemb	alv.				
5. the effects of fear-world conditions of	if a part of assering	Лу				
UNIT 1: INTRODUCTION						9
Introduction to CAD – I/O devices – various g	graphics standards	-coor	dinate s	ystems	– Geon	netric Modelling:
Introduction – types of geometric modelling –	wire frame – sur	face an	d solid i	modelli	ng. Wir	reframe entities –
types of curves and its mathematical represent	tation - line- circ	le- ellip	se- para	abola- (Cubic sj	pline- Bezier and
B-spline (Only Basic treatment). Solid me	odelling entities	- Solic	ł mode	llingted	hnique	s-CSGandBREP-
OperationsperformedinCSGandBREP-Extrude	e-sweep - linear a	nd Non	linear- 1	revolve		
	D					0
UNIT 2: GRAPHIC CONCEPTS (2Dand 3) Transformations - translation- scaling-	D) reflection- rotati	ion C	oncaten	ated t	ransfor	9 mation Inverse
transformation Hidden line removal - 7-	Buffer algorithm	- hrief	eneuten E descri	ntion	of shad	ling and colour
renderingtechniques Manipulationandeditingo	fentities-selection	methor	ls_drag	ging_cli	nning_	trimming_
stratching offsetting pattern copying delat	ing regeneration	a mea	uring	Brief d	pping-	on of animation
tures and techniques	ing - regeneratin	g- mea	suring.	bilei u	escriptio	on or anniation-
types and techniques						
UNIT 3: SOFTWARE PACKAGES AND I	RECENT TECH	NOLO	GY			9
All about popular commercial solid modell	ing packages —	their s	alient f	eatures	- techni	ical comparison-
modulesandToolsavailable-briefoutlineofData	exchangestandard	ls.Brief	outlined	of fe	ature	technology -
classification of features- design by features- a	applications of fea	atures- i	ts advai	ntages-	and lim	itations.
UNIT 4: FEM FUNDAMENTALS						9
Introduction to finite element method - princ	iple- Steps involv	ved in H	FEA - n	odes- e	lement	and their types-
shape function-constraints, forces and nodal d	lisplacements-stif	fness m	atrix- s	olution	techniq	ues. Analysis of
spring element. Simple problems involving	stepped bars sub	jected t	o axial	loadin	g and s	imple structural
members for triangular element						
UNIT 5: ANALYSIS						9
Stages of FEA in a CAD environment -	Pre-processor-	solver	and po	ostproce	essor. F	Pre-processing -
FEAmodelling-geometrygeneration-nodegene	ration-elementger	neration	-bound	arycons	traints-	load

187

constraints- - mesh generation and refining. Solving - performing the actual analysis. Post processing-

Typesof0/Pavailable-interpretationofresults.Demonstrationoftheaboveusingany one popular commercial package. Other types of analysis: Brief outline of kinematical analysis- manufacturability analysis and simulation.

TOTAL: 45 PERIODS

COURSE OUTCOMES: On successful completion of this course, the student will be able to CO1: Plan and read engineering drawings

CO2: Identify engineering objects and components from drawings.

CO3: Utilize solid models created in computer.

CO4: Compare the relation between 2D drafting and 3D models

CO5: Choose the graphical models for further engineering applications

CO'S I	PO'S&	PSO'S	MAPI	PING											
	DO1	DOJ			DO5	DO6	DO7	DOS	DOO	PO	PO	PO	PSO	PSO	PSO
	FOI	FO2	FUS	r04	FUS	FOO	FO/	FU8	F09	10	11	12	1	2	3
CO1	3	3	2	2	2	-	-	-	-	-		-	2	1	-
CO2	3	3	2	1	-	-	-	-	-	-	2		3	1	-
CO3	3	2	2	1	2	-	-	-	-	-		-	3	1	-
CO4	2	1	1	2	3	-	-	-	-	-	2	-	-	-	1
CO5	3	2	2	2	3	-	-	-	-	-		-	-	2	1

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Chairs Mcmahon and Jimmie Browne, "CAD / CAM: Principles, Practice and Manufacturing

Management", Prentice Hall, 2nd Ed., 1999.

2. Ibrahim Zoid., "CAD / CAM", Theory and Practice, TMH,2001.

3. Radhakrishnan, P., "CAD / CAM / CIM", New Age International, 2000

REFERENCE BOOKS:

1. ChandupatlaandBolagundu.,"IntroductiontoFiniteElementMethodsinEngineering",Pearson Education India, 4th Ed., 2015.

2. Mikell P. Groover, "CAD/CAM: Computer-Aided Design and Manufacturing", PHI,2003

3. Newman and Sproull, R.F., "Principles of interactive Computer Graphics", TMH, 1997.

Vertical - 8

DIVERSIFIED COURSES

GROUP 2

CURRICULUM

S. No.	Course Code	Course Title	Classification		L	Т	Р	С
1	AE606801	Boundary layer theory (NPTEL)	PE	Theory	3	0	0	3
2	AE606802	Aero elasticity	PE	Theory	3	0	0	3
3	AE606803	Heat transfer (NPTEL)	PE	Theory	3	0	0	3
4	AE606804	Grid Generation Techniques	PE	Theory	3	0	0	3
5	AE606805	Advanced Vehicle Engineering	PE	Theory	3	0	0	3
6	AE606806	Post Processing in Drone Surveying	PE	Theory	3	0	0	3
7	AE606807	Flexible Manufacturing Systems (Common to MAE, Mech and Aero)	PE	Theory	3	0	0	3
8	MA606203	Aircraft systems and instruments	PE	Theory	3	0	0	3
9	AE606808	MEMS (NPTEL)	PE	Theory	3	0	0	3

AE606801 BOU	NDARY LAYER THI	EORY				
Course Category: Vertical 8	Course Type:	L	Т	Р	С	
	Theory	3	0	0	3	
COURSE OBJECTIVES:						
• To acquaint students with the fundam	ental concepts in boun	dary lay	ver flow	and w	ith the	govern-
ing equations of viscous flow						
• To make students familiarize with obt	aining analytical soluti	ons for	low spe	ed visc	ous flo	w prob-
lems commonly found in engineering	applications					
• To introduce the basic concepts in lan	ninar boundary layer th	eory and	d its ap	plicatio	ns in ei	ngineer-
ing to students						
• To elucidate students on the complex	phenomenon in turbul	ent bou	ndary la	ayer the	ory and	d turbu-
lence modelling						
• To make students knowledgeable on t	he techniques used for	boundar	y layer	control		
UNIT 1: FUNDAMENTAL EQUATIONS OF	VISCOUS FLOW					9
Fundamental equations of viscous flow, Conserv	vation of mass, Conserv	vation of	f Mome	entum -	Navier	r-Stokes
equations, Energy equation, Mathematical chara	cter of basic equations	, Dimer	nsional	parame	ters in	viscous
flow, Non - dimensionlisation the basic equa	ations and boundary	conditio	ons, vo	rticity	conside	erations,
creeping flow and boundary layer flow.						
UNIT 2: SOLUTIONS OF VISCOUS FLOW E	QUATIONS					9
Solutions of viscous flow equations, Couette	e flows, Hagen- Pois	uelle fl	ow, Fl	ow bet	ween	rotating
concentric cylinders, Combined Couette- Poiseu	ille Flow between para	allel pla	tes, Cre	eping 1	notion	, Stokes
solution for an immersed sphere, Development of	of boundary layer, Dis	placeme	nt thick	kness, n	noment	um and
energy thickness.						
UNIT 3: LAMINAR BOUNDARY LAYER						9
Laminar boundary layer equations, Flat plate l	Integral analysis of Ka	arman –	- Integr	al anal	ysis of	energy
equation – Laminar boundary layer equations	- boundary layer over	er a cur	ved bo	dy- Flo	ow sep	aration-

similarity solutions, Blasius solution for flat-plate flow, Falkner-Skan wedge flows, Boundary layer temperature profiles for constant plate temperature –Reynold's analogy – Pohlhausen method.

UNIT 4: TURBULENT BOUNDARY LAYER

Turbulence-physical and mathematical description, Two-dimensional turbulent boundary layer equations -Velocity profiles - The law of the wall - The law of the wake - Turbulent flow in pipes and channels -Turbulent boundary layer on a flat plate - Boundary layers with pressure gradient, Eddy Viscosity and mixing length.

9

9

UNIT 5: BOUNDARY LAYER CONTROL

Boundary layer control in laminar flow-Methods of Boundary layer control: Acceleration of the boundary layer-Suction- Injection of a different gas-Prevention of transition - Cooling of the wall - Boundary layer suction- Practical examples of Boundary Layer Control.

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1: Apply fundamental equations of the viscous flow for practical examples.

CO2: Analyze the viscous flow problems for solutions.

CO3: Explain the importance of viscosity and shear flow adjacent to the airframe of the aerospace vehicles.

CO4: Build an understanding about the laminar boundary layer concepts and solution methods.

CO5: Illustration about the importance of turbulence boundary layer in an aerospace Engineering problem.

CO'S PO'S&PSO'S MAPPING

	-														
	DO1	DOD			DO5	DOG	DO7	DOQ	DOO	PO	PO	PO	PSO	PSO	PSO
	FUI	PO2	POS	PU4	POS	FU0	FO/	FUo	F09	10	11	12	1	2	3
CO1	3	3	2	2	2	-	-	-	-	1	-	2	-	3	3
CO2	3	3	1	2	1	-	-	-	-	1	-	2	-	3	2
CO3	3	2	2	1	2	1	1	-	-	-	1	1	2	2	1
CO4	3	2	1	-	1	-	-	2	-	-	1	1	2	1	1
CO5	3	3	2	1	2	1	-	2	1	1	2	2	2	2	2
			1 low	2	dimm	2 hia	h 6 1 m		alation						

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. White, F. M., Viscous Fluid Flow, McGraw-Hill Education; 3rd edition, 2005.

2. A.J. Reynolds, "Turbulent flows in Engineering", John Wiley & Sons, 1980.

3. H. Schlichting, "Boundary Layer Theory", McGraw-Hill, New York, 1979.

REFERENCE BOOKS:

1. Frank White – Viscous Fluid flow – McGraw Hill, 1998

2. Ronald L., Panton, "Incompressible fluid flow", John Wiley & Sons, 1984.

3. Tuncer Cebeci and Peter Bradshaw, "Momentum transfer in boundary layers", Hemisphere Publishing Corporation, 1977.

4. Fundamentals of Aerodynamics, John D. Anderson, , McGraw Hill, USA, 2007

WEB RESOURCES:

1. Introduction to boundary layers: <u>https://nptel.ac.in/courses/112106190</u>

A	E606802 AERO ELASTICITY	7	1			
Course Category: Vertical 8	Course Type: Theory	L	T î	P	C	-
	J F J	3	0	0	3	
• Evaluia atmostral concentra	mah as alastic stifferess in the	infl	n oc cc	officiar		tio orig
Explain structural concepts	such as elastic stiffness, inertia	i, influe	nce co	erricien	ts, elas	tic axis,
and shear center.						
Describe structural dynamic	es of wings, including bending and	d torsion	n mode	s of vib	ration a	and their
associated natural frequenci	es.					
Apply aeroelastic concepts	of divergence, flutter, lift and ro	ll effect	iveness	s, ailero	n revei	sal, and
mode coalescence.						
• Knowledge to formulate and	d derive static and dynamic aeroe	lastic eq	luations	s of mot	ion.	
• To Apply Rayleigh-Ritz Me	ethod for Approximate continuou	s aeroel	astic sy	stems a	ble to]	Interpret
velocity-damping and veloc	ity-frequency flutter diagrams.					
UNIT 1: AERO ELASTICITY PHEN	NOMENA					9
Vibration of beams due to coupling	between bending and torsion -	The aer	o-elast	ic trian	gle of	forces -
Stability versus response problems -	- Aeroelasticity in Aircraft De	sign –	Vortex	induc	ed vib	ration –
Introduction to aero servo elasticity.						
UNIT 2: DIVERGENCE OF A LIFT	ING SURFACE					9
Simple two dimensional idealizations -	- Strip theory – Fredholm integra	l equation	on of th	ne secor	nd kind	– Exact
solutions for simple rectangular wing	s - Semi rigid assumption and	approxi	mate so	olutions	– Ger	eralized
coordinates – Successive approximatio	ns – Numerical approximations u	ising ma	trix eq	uations.		
UNIT 3: STEADY STATE AEROEL	LASTIC PROBLEMS					9
Loss and reversal of aileron control – C	Critical aileron reversal speed – A	Aileron e	efficien	cy – Se	mi rigi	d theory
and successive approximations – Lift d	listributions – Rigid and elastic w	ings.				
UNIT 4: FLUTTER ANALYSIS						9
Non-dimensional parameters – Stiff	fness criteria Dynamic mass	balancin	ıg – 1	Model	experin	ments –
Dimensional similarity – Flutter analy	vsis - Two dimensional thin airf	oils in s	steady	incomp	ressible	e flow –
Quasi steady aerodynamic derivatives -	- Galerkin's method for critical s	peed – S	Stabilit	y of dist	ributed	l motion
– Torsion flexure flutter – Solution of	f the flutter determinant – Metho	ods of d	etermi	ning the	critica	al flutter
speeds – Flutter prevention and control						
UNIT 5: EXAMPLES OF AEROELA	ASTIC PROBLEMS					9
Galloping of transmission lines and flo	ow induced vibrations of tall slen	der strue	ctures a	and susp	ension	bridges
- Aircraft wing flutter- Vibrational pro	blems in Helicopters.					
	Cale (1 1	- 4	Ί	OTAL	: 45 PE	RIODS
COUKSE OUTCOMES: At the end of CO1: Formulate and perform classical	solutions of aeroelastic problems	ie to				
correction of the second secon		•				
	147					

CO2: Calculate divergence of a lifting surface in the aerospace vehicles.

CO3: Formulate aeroelastic equations of motion and use them to derive fundamental

relations for aeroelastic analysis.

CO4: Analyze the static aeroelastic instabilities such as divergence, control surface reversal and flutter

CO5: Analyze the aeroelastic problems in civil and mechanical engineering.

CO'S PO'S&PSO'S MAPPING

	DO1	DOJ	DO2		DOS	DOC	DO7		DOO	PO	PO	PO	PSO	PSO	PSO
	POI	PO2	P05	PO4	POS	POo	P07	PU8	P09	10	11	12	1	2	3
CO1	2	-	3	-	-	-	-	-	-	-	-	2	2	-	-
CO2	-	3	-	2	-	-	-	-	2	-	-	-	-	2	1
CO3	2	-	3	-	-	-	-	-	-	-	-	2	2	-	-
CO4	2	-	-	2	3	-	-	-	-	-	-	-	-	-	-
CO5	-	3	-	-	-	-	_	_	-	-	-	-	-	_	

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Fung, Y.C. An Introduction to the theory of Aeroelasticity, Dover Publications Inc., 2008.

2. Bisplinghoff., R.L. Ashley, H., and Halfman, R.L, "Aeroelasticity" Addison Wesley Publishing Co., Inc. II ed. 1996.

3. Broadbent, E.G., Elementary Theory of Aeroelasticity, Bunhill Publications Ltd, 1986.

REFERENCE BOOKS:

1. Blevins R.D, "Flow induced vibrations", Krieger Pub Co; 2 Reprint editions, 2001.

2. Scanlan, R.H. and Rosenbaum, R., Introduction to the Study of Aircraft Vibration and Flutter, Macmillan Co., N.Y., 1991.

WEB RESOURCES:

1.Aeroelasticity - https://nptel.ac.in/courses/101104005

AE6068	803 HEAT TRA	NSFER	2			
Course Category: Vertical 8	Course Type:	L	T	P	C	-
COUDSE OBJECTIVES:	Theory	3	0	0	3	
• To make students familiarize with	the basic metho	de in C	onducti	on Un	dorston	d the concept of
• To make students familiarize with	the concerts of h			on. On	uerstan	a the concept of
Lump Parameter analysis and earn	the concepts of b	oundary	layer.			
• To elucidate students on the variou	is correlation used	l in Con	vective	Heat T	ransfer	
• To make students knowledgeable of	on the Design/size	e of Hea	t Excha	nger ar	d its ty	pes.
• To introduce the concepts of Radi	ation and laws as	ssociated	d with i	t, Blacl	k Body	, Grey Body and
View factor.						
• To elucidate students on the variou	is technique used	for Rad	liation E	Exchang	ge and I	Radiation shield-
ing.						
UNIT 1: CONDUCTION						9
Introduction to Heat Transfer - Introduction to	o Heat Transfer -	Heat Di	ffusion	Equati	on - Re	elevant Boundary
Conditions in Conduction - One Dimensional	Steady State Co	nduction	n - Tem	peratui	e Distr	ibution in Radial
Systems - Tutorial Problem on Critical Insul	ation Thickness -	Heat S	ource S	ystems	s - Tuto	orial Problems of
Heat Generating Systems - Transient Cond	uction - Lumped	l Capac	itance -	Trans	ient he	eat Conduction -
Heisler Chart - Heat Transfer from Extended	Surface - Fins and	d Genera	al Cond	uction	Analysi	ls.
UNIT 2: CONVECTION						9
Fundamentals of Convection - Equations of (Change for Non-i	sotherm	al Syste	ems - I	Equation	ns of Change for
Non-isothermal Systems - Application of Ene	ergy Equation - N	lusselt I	Number	of a he	eated sp	where in Stagnant
Air. Momentum and Thermal Boundary La	yers - The Flat	Plate in	Paralle	el Flow	- Hyc	lrodynamics and
Momentum Transfer - Flat Plate in Parallel	Flow - The Effe	ects of 7	Furbule	nce - T	[°] urbule	nt External Flow
Heat and Momentum Transfer Analogy - Miz	xed Boundary La	yers - T	utorial	Problei	n on E	xternal Flow and
Behavior of - Heat Transfer Coefficient - Inte	ernal Flow Heat T	ransfer				
UNIT 3: HEAT EXCHANGERS						9
Free Convection - Heat Exchangers - Tutoria	l Problems on He	eat Exch	anger (Calcula	tions - '	Tutorial Problem
on LMTD and Dirt Factor - Epsilon-NTU Me	thod - Boiling, Ev	vaporati	on and l	Evapor	ators	
UNIT 4: RADIATION						9
Fundamental Concepts - Spectral Blackbody	Radiation Intesit	y and E	missive	Powe	r Wein'	s Law - Stephen
Boltzmann Law - Blackbody Radiation Fu	unction - Kirchh	noff's L	aw- E	Emissiv	ity - A	Absroptivity and
Blackbody Radiation - Solar Radiation and the	e Concept of Vie	w Factor	rs - Dete	ermina	tion of	View Factors
UNIT 5: RADIATION EXHANGE						9
Radiosity Blackbody Radiation Exchanges, R	Relevant Problem	- Netwo	ork Met	hod for	r Radia	tion Exchange in
an Enclosure - Network Method - Two and T	hree Zone Enclos	ures - T	utorial	Probler	n on Ra	adiation Exhange
using the Network Method Radiation Shields	- Gaseous Radia	tion (Pa	rticipati	ng Meo	lium)	
					ТОТА	L: 45 PERIODS

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1: Apply the basic methods in Conduction. Understand the concept of Lump Parameter analysis and earn the concepts of boundary layer.

CO2: Apply various correlation used in Convective Heat Transfer

CO3: Design/size Heat Exchanger and its types & laws associated with it.

CO4: Comprehend the concepts of Radiation and laws associated with it, Black Body, Grey Body and View factor.

CO5: Apply various technique used for Radiation Exchange and Radiation shielding.

CO'S PO'S&PSO'S MAPPING

	DO1	DOO	DO2		DOS	DOC	DO7	DOQ	DOO	PO	РО	РО	PSO	PSO	PSO
	POI	PO2	PO3	PO4	P05	PO6	PO/	PU8	P09	10	11	12	1	2	3
CO1	3	3	3	2	-	-	-	-	-	-	-	-	2	-	-
CO2	3	3	3	2	-	-	-	-	-	-	-	2	-	-	
CO3	3	2	1	2	-	-	-	-	1	1	1	1	2	2	1
CO4	3	2	1	2	1	1	1	-	-	-	-	1	2	-	1
CO5	3	3	3	2	1	1	1	-	1	1	1	1	2	2	1

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Holman, J.P., "Heat Transfer", McGraw Hill Book Co., Inc., New York, Sixth Edition, 1991.

2. Sachdeva,S.C., "Fundamentals of Engineering Heat and Mass Transfer", Wiley Eastern Ltd., New Delhi,1981.

3. Yunus, A.Cengel, "Heat Transfet-A Practical Approach", Tata McGraw Hill, Second edition, 2003.

4. E Rathakrishnan, "Elements of Heat Transfer", Taylor and Francis, CRC Press, 2012.

REFERENCE BOOKS:

1. Lienhard, J.H., A Heat Transfer Text Book, Prentice Hall Inc., 1981.

2. Mathur, M. and Sharma, R.P., Gas Turbine and Jet and Rocket Propulsion, Standard Publishers, New Delhi, 1988.

3. Sutton, G.P., Rocket Propulsion Elements, John Wiley and Sons, Fifth Edition, 1986

WEB RESOURCES:

1. Heat Transfer: https://nptel.ac.in/courses/103105140

AE606804 GRI	D GENERATIO	N TECI	HNIQU	JES		
	Course Type:	L	Т	Р	C	
Course Category: Vertical 8	Theory	3	0	0	3	
COURSE OBJECTIVES:				I		
• To make students understand the r	need for grid gene	ration fo	or nume	erical so	olutions	
• To give them exposure to both stru	actured and unstru	uctured g	grid ger	neration	metho	ds
• To impart knowledge on the area	s of application a	and on t	he imp	lement	ation m	ethods for struc-
tured and unstructured grid genera	tion techniques					
• To expose the students on the bend	efits of adaptive n	neshing	and its	method	lology	
• To impart training to students on t	he control of grid	quality				
UNIT 1: BASIC ASPECTS IN GRID GEN	ERATION					9
Methodology of grid generation- classification	on of grid generat	tion tech	niques	– Strue	ctured,	Unstructured and
Hybrid grids and their characteristic featur	res – Areas of a	pplicatio	on –Ge	ometry	related	l issues for grid
generation – Grid or mesh topology – Confor	mal Mapping-Do	main de	compos	sition w	ith mul	tiblocking.
UNIT 2: STRUCTURED GRID GENERA	TION					9
Algebraic methods for structured grid gener	ration – Use of b	lending	functio	ons for	grid ge	neration- Use of
partial differential equations for structured gr	id generation – E	lliptic so	chemes	for stru	ictured	grid generation –
Implementation of boundary conditions for su	mooth grid genera	ation – V	ariatio	nal met	thods –	Applications – A
brief introduction to hyperbolic schemes for g	grid generation.					
UNIT 3: UNSTRUCTURED GRID GENE	RATION					9
Use of triangular, quadrilateral and tetrah	edral grids/mesh	es – Co	oncept	of dua	ıl mesh	- Connectivity
Information and data structure in unstructure	d grid generation	– Hiera	rchy in	unstru	ctured g	grid Generation –
Composite grid schemes in unstructured grid	generation – Mo	ving fro	nt tech	nique-1	Delauna	y base method –
Octree approach.						
UNIT 4: ADAPTIVE MESHING						9
Description of adaptive mesh refinement -	- Adaption contr	rol – St	rategies	s for n	nesh ad	aption- Solution
gradient based adaption - Discretization error	or and Recovery	based a	daption	- r ada	aption, 1	h adaption and p
adaption methods – Elementary concepts in a	dynamic meshing	and me	sh mot	ion – R	ole of a	daptive meshing
in solution accuracy and convergence.						
UNIT 5: GRID QUALITY AND QUALITY	Y CONTROL					9
A brief description of metrics for grid qua	ality – Aspect ra	tio – O	rthogor	ality –	Skewr	ness – Warpage-
Jacobian- Best practices for grid quality and	l grid control – n	nesh/grid	l qualit	y aspec	ets in su	urface meshing –
Volume meshing and quality check - Grid	quality aspects i	in bound	dary la	yer flo	ws – Pi	rismatic layers –

196

Quality control in hybrid mesh transition – guideline for checking mesh quality and control.

TOTAL: 45 PERIODS

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1: Acquire knowledge on the basic principles of grid generation and be able to apply preliminary grid selection tasks in aerospace applications

CO2: Understand the multi-block grid generation procedures and be able to evaluate multi-block grid designs of computational domain in aerospace related problems

CO3: Evaluate structured and unstructured grid designs and be able to take decisions on selection of suitable grid blocks for the computational domains in aerospace applications.

CO4: Apply adaptive meshing methods for better management of computer resources and cost effective solutions in aerospace engineering

CO5: Apply skills in ensuring the good quality of grid that is essential to get reasonably accurate numerical solutions for complex aerospace engineering problems

CO'S PO'S&PSO'S MAPPING

	DO1	DOO	DO2		DOC	DOC	D07	DOO	DOO	PO	РО	PO	PSO	PSO	PSO
	POI	PO2	PO3	PO4	PO5	PO6	PO/	P08	P09	10	11	12	1	2	3
CO1	1	2	1	-	-	-	-	-	-	-	-	-	2	-	-
CO2	1	3	-	-	3	-	-	-	-	-	-	-	3	1	-
CO3	1	3	1	1	1	-	-	-	-	-	-	-	3	1	-
CO4	1	2	-	2	3	-	-	-	-	-	-	-	2	-	-
CO5	1	1	1	_	_	-	_	_	-	-	-	-	3	1	1

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Fletcher C.A.J., "Computational Techniques for Fluid Dynamics 1" Springer Verlag, 1996.

2. Liseikin V. D., "Grid Generation Methods:, Springer-Verlag Berlin and Heidelberg GmbH & Co. KG 1st edition 1999.

3. Chung T. J., "Computational Fluid Dynamics", Cambridge University Press; 2nd edition, 2010.

REFERENCE BOOKS:

1. Patrick Knupp & Stanly Steinberg, "Fundamentals of Grid Generation" CRC Press 1st edition 1993

2. Versteeg H.K. and Malalsekera W. "An Introduction to Computational Fluid Dynamics, The Finite Volume Method", PHI; 2nd edition 2007.

3. John F Wendt, "Computational Fluid Dynamics - An Introduction", 3rd Edition, Springer- Verlag, Berlin

Heidelberg, 2009.

WEB RESOURCES:

1. Introduction to Grid Generation: http://www.nitttrc.edu.in/nptel/courses/video/112107079/L42.html

AE606805 ADVANC	CED VEHICLE E	NGINE	ERING	r		
	Course Type:	L	Т	Р	С	
Course Category: Vertical 8	Theory	3	0	0	3	l
COURSE OBJECTIVES:						
• To introduce the basic concepts of electric	c vehicle and their	charact	eristics			
• To introduce different types of motors and	d the selection of n	notor fo	r vehicl	e applic	cations.	
• To acquaint the student with different se	nsors and systems	used in	autono	omous a	and con	nected vehi-
cles.						
• To give an overview of networking with s	sensors and system	s.				
• To introduce the modern methods of diag	nosing on-board th	e vehic	le troub	les.		
UNIT 1: ELECTRIC VEHICLES						9
EV architectures, advantages and disadvantage	es, Electrical and	mechan	ical en	ergy st	orage t	echnologies,
battery management. Performance of Electric	Vehicles, Tractiv	ve effor	t and	Transm	ission	requirement,
Vehicle performance, Tractive effort in normal d	riving.					
UNIT 2: ELECTRIC VEHICLE MOTORS						9
Electric Propulsion basics, motor capacity dete	rmination, Inducti	on mot	or, DC	motor,	Perman	nent Magnet
Motor, Switch Reluctance Motor, Configuration,	Characteristics, Pe	erforma	nce and	control	of Driv	/es.
UNIT 3: AUTONOMOUS AND CONNECTE	D VEHICLES					9
Vehicle-to-Vehicle Technology, Vehicle to Re	oad and Vehicle	to Veh	icle Inf	frastruc	ture, Ba	asic Control
System, Surroundings Sensing Systems, Role	of Wireless Data	Netwo	rks, Ac	lvanced	Drive	r Assistance
Systems, Basics of Radar System, Ultrasonic So	onar Systems, Lida	ur Syste	m, Can	nera Te	chnolog	y, Basics of
Wireless Technology, Receiver System.						
UNIT 4: AUTOMOTIVE NETWORKING						9
Bus Systems – Classification, Applications in the	e vehicle, Coupling	g of netv	vorks, r	network	ed vehi	cles, Buses -
CAN Bus, LIN Bus, MOST Bus, Bluetooth, Flex	Ray, Diagnostic I	nterface	S			
UNIT 5: ON-BOARD TESTING						9
Integration of Sensor Data to On-Board Co	ontrol Systems (C	OBD),	OBD 1	equirer	nents,	certification,
enforcement, systems, testing, Catalytic conve	erter and Exhaus	t Gas	Recircu	lation	system	monitoring,

Introduction to Cyber-physical system

TOTAL: 45 PERIODS

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1. Acquire an overview of electric vehicles and their importance in automotive.

CO2. Discuss the characteristics and the selection of traction motor.

CO3. Comprehend the vehicle-to-vehicle and autonomous technology.

CO4. Explain the networking of various modules in automotive systems, communication protocols and diagnostics of the sub systems.

CO5. Be familiar with on-board diagnostics systems.

CO'S PO'S&PSO'S MAPPING

	DO1	DOO	DO2		DOS	DOC	DO7	DOQ	DOO	РО	РО	РО	PSO	PSO	PSO
	POI	PO2	PO3	PO4	P05	PO6	PO/	PU8	P09	10	11	12	1	2	3
CO1	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1
CO2	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1
CO3	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1
CO4	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1
CO5	2	1	1	1	-	-	2	-	1	-	-	1	1	2	1

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. John G Hayes and G AbaasGoodarzi, Electric Powertrain -, 1st Edition, John Wiley & Sons Ltd., 2018.

2. Hussain T Mouftah, Melike Erol-kantarci and Samesh Sorour, Connected and Autonomous Vehicles in Smart Cities, CRC Press, 1st Edition, 2020.

3. Advanced Technology Vehicles Manufacturing (ATVM) Loan Program (Energy Science, Engineering and

Technology: Congressional Policies, Practices and Procedures)by Andrew M Wright and Harrison R Scott | 5 September 2012.

REFERENCE BOOKS:

1. Dominique Paret, Multiplexed Networks for Embedded Systems, John Wiley & Sons Ltd., 2007.

2. Hong Cheng, —Autonomous Intelligent Vehicles: Theory, Algorithms & amp; Implementation , Springer, 2011.

3. Advanced Vehicle Technology by Heinz Heisler MSc BSc FIMI MIRTE MCIT | 17 July 2002 148.

4. Advanced Motorsport Engineering: Units for Study at Level 3by Andrew Livesey | 1 September 2011.

WEB RESOURCES:

1. Fundamentals of Electric vehicles:https://nptel.ac.in/courses/108106170

199

AE606806 POST PR	OCESSING IN	DRONE	SUR	VEYIN	G					
Course Category: Vertical 8	Course Type:	L	Т	Р	C					
Course Category. Vertical o	Theory	3	0	0	3					
COURSE OBJECTIVES:					I					
• To introduce the basic concepts of Ag	isoft Metashape I	Pro, Pho	togram	metry S	oftware	2.				
• To introduce Data Geo Referencing W	Vith RTK, PPK of	r RPK N	lethods							
• To acquaint the student with Global M	lapper, GIS Softw	vare.								
• To give an overview of Pythagoras CA	AD And GIS.									
• To introduce the concepts of UAV Da	ta Processing.									
UNIT 1: AGISOFT METASHAPE PRO, P	PHOTOGRAMM	IETRY	SOFT	WARE	1	9				
PhotoScan – application available in Standa	ard and Pro vers	ions- au	tomatio	c genera	ation- c	lassifiable dense				
point clouds- textured polygon models (3I	D model)- geo-re	eference	d orth	omosaic	cs-DSM	-Digital Surface				
Models (DEM-Digital Elevation Model)- Dig	gital Terrain Mode	els (DTN	A).							
UNIT 2: DATA GEO REFERENCING WITH RTK, PPK OR RPK METHOD9										
position and orientation system (POS) data-C	Bround control po	oints (GC	CPS)- C	Google	Earth co	oordinates-metric				
accuracy-automatic mode based on the posit	tioning metadata-	-PPK (P	ost Pro	cessed	Kinem	atics)- RPK (Re-				
processed Kinematics)- GeotagZ software	from Septentrio-	GNSS	reception	on base	-Septer	ntrio Altus-NR3-				
RINEX data-fixed base in real time (via NTR	IP) or in PPK.									
UNIT 3: GLOBAL MAPPER, GIS SOFT	WARE					9				
Stand-alone spatial data management softwa	are-Topographs-p	oints clo	ouds, o	rthopho	otos or	DSM/DTM-Blue				
Marble Geographics-Global Mapper, LIDAR	R module and Ge	oCalc-ad	ccurate	map cr	eation-	optimized spatial				
data management-powerful analytics tools-	Terrain Analysis	and 3I	D Data	Proces	ssing - R	aster and vector				
creation and editing features-intuitive drawing	ing to image cor	rection	and ve	ctorizat	ion-Ad	vanced Attribute				
Editing and Real-Time Hill Shade Rendering										
UNIT 4: PYTHAGORAS CAD AND GIS						9				
Mapping solution for all your geodata- 360	° compatible-La	nd Surv	eying-	drawin	g and c	calculation tools-				
Agriculture- Soils analysis, crop monitorin	g, irrigation and	growth	mana	gement,	damag	ge detection and				
creating machine control- GPS data and UA	AV images allow	vs to cre	eate 3D) mode	ls- Min	ing- 3D models,				
excavation reports, contour lines, profiles and	l cross sections.									
UNIT 5: UAV DATA PROCESSING						9				
Orthomosaic Maps- 3D Point Cloud- Digi	tal Surface Mod	els (DS	M)- D	igital T	Terrain	Models (DTM)-				
Contour Maps-3D textured mesh										
	200									

COURSE OUTCOMES: At the end of the course, the student will be able to

CO1. Acquire an overview of Agisoft Metashape Pro, Photogrammetry Software.

CO2. Apply RTK, PPK or RPK Methods for Data Geo Referencing.

CO3. Apply the concepts of Global Mapper, GIS Software.

CO4. Apply the concepts of Pythagoras CAD And GIS to solve drone survey problems.

CO5. Analysis the UAV data using Digital Surface Models, Digital Terrain Models.

CO'S PO'S&PSO'S MAPPING

	DO1	DO2	DO2		DOS	DOC	DO7		DOO	PO	РО	РО	PSO	PSO	PSO
	POI	PO2	PO3	P04	P05	PUo	P07	PU8	P09	10	11	12	1	2	3
CO1	1	1	1	1	2	-	-	-	1	-	-	1	1	1	1
CO2	1	1	1	1	2	-	-	-	1	-	-	1	1	1	1
CO3	1	1	1	1	2	-	-	-	1	-	-	1	1	1	1
CO4	1	1	1	1	2	-	-	-	1	-	-	1	1	1	1
CO5	1	1	1	1	2	-	-	-	1	-	-	1	1	1	1

1- low, 2 - medium, 3 - high, '-' no correlation

REFERENCE BOOKS:

1. Garvit Pandya, Basics of Unmanned Aerial Vehicles: Time to start working on Drone Technology, Notion Press, 2021.

2. PK Garg, Introduction To Unmanned Aerial Vehicles, New Age International Publishers New Age International Private Limited; First edition (1 October 2020).

3. Kike Calvo, So You Want to Create Maps Using Drones?, Blurb Publishers, 2015.

WEB RESOURCES:

1. The Ultimate Guide for Land Surveying with Drones: https://www.udemy.com/course/land-surveying-with-drones-fly-process-analyze-1/

AE606807 FLEXIBLE MANUFA	CTURING SYS	TEMS	(Commo	n to MA	E, Mech	and Aero)
Course Cotogony, Venticel 8	Course Type:	L	Т	Р	C	
Course Category: Vertical o	Theory	3	0	0	3	
COURSE OBJECTIVES:			1		1	
1. To impart knowledge about FMS &	t its applications.	I				
2. To impart knowledge about Measur	ring cell.					
3. To impart knowledge about Group	Technology					
4. Differentiate Turning & Machining	centres.					
5. To impart knowledge about CMM.						
UNIT 1: FMS INTRODUCTION AND DE	SCRIPTION					9
Limitations with conventional manufacturing	g, Need for FMS	Introdu	ction, I	Definiti	on, Bas	ic Component of
FMS, Significance of FMS, Benefits and lin	mitations of FMS	S, Area	of App	olication	n of a I	FMS in Industry,
Various Hardware and Software required for	an FMS, CIM Te	chnolog	çy,			
UNIT 2: MANUFACTURING CELL						9
Introduction, Description and Classification	ns of Cell, Una	ttended	Machi	ning, C	Cellular	versus Flexible
Manufacturing, General layout and configura	ation of FMS, Pri	inciple (Objectiv	ves of H	FMS, H	ierarchy of CIM,
FMS Justification.						
UNIT 3: GROUP TECHNOLOGY						9
Introduction, Definition, Reasons for Adoptin	ng Group Techno	ology, B	enefits	of Grou	ip Tech	nology Affecting
Many Areas of a Company, Obstacles to App	olication of GT					
UNIT 4: TURNING AND MACHINING C	CENTRES					9
Introduction, Types, Construction and Ope	ration Performed	l on Tu	rning e	enter, A	Automat	ed Features and
Capabilities of Turning Centres, Pallet and Pa	art Loading and P	rogrami	ning Oj	ptions i	n Mach	ining Centres.
UNIT 5: COORDINATE MEASURING M	IACHINES					9
Introduction, Types, Construction and Gene	eral Functions of	CMM,	Operati	ional C	ycle De	escription, CMM
Applications, Importance to Flexible Cells and	d Systems.					
					ТОТА	L: 45 PERIODS
COURSE OUTCOMES: At the end of the co	ourse, the student	will be a	ble to			
CO1: Demonstrate the ability to design a vari	ous system using	pneum	atic and	hydrau	lic com	ponents.
CO2: Keep abreast knowledge on various flig	ght control system	n and its	recent	advance	ements.	
CO3: Demonstrate the fundamental understar	nding of the opera	ation of	engine a	auxiliar	y systei	ns.
CO4: To understand the various cabin comfo	rt system used in	aircraft	modern	displa	y systen	ns.
CO5: Describe the principle behind the opera	tion of various vi	tal para	meter di	isplays	and its	uses

202

in effective conduct of the flight.

CO'S PO'S&PSO'S MAPPING

		DOO	DO 2		DOC	DOC	D07	DOO	DOO	PO	PO	PO	PSO	PSO	PSO
	POI	PO2	PO3	P04	P05	P06	PO/	P08	P09	10	11	12	1	2	3
CO1	3	-	-	-	-	-	-	-	-	-	-	-	2	1	-
CO2	3	2	3	2	3	-	-	-	-	-	2	-	2	1	-
CO3	3	2	3	2	3	-	-	-	-	-	3	-	2	1	-
CO4	3	2	3	2	3	-	-	-	-	-	3	-	2	1	-
CO5	3	2	3	2	2	-	-	-	-	-	3	-	2	1	-

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Shivanand H.K., Benal MM, Koti V, "Flexible Manufacturing System", New age international (P)

Limited, New Delhi, 2006

2. Mikell P. Groover "Automation, Production Systems and Computer Integrated Manufacturing", PHI, 2008

REFERENCE BOOKS:

1. Approach to Computer Integrated Design and Manufacturing Nanua Singh, John Wiley and

Sons, 1998

2. Kalpakjin, "Manufacturing Engineering and Technology ", Addison-Wesley Publishing Co., 1995.

WEB RESOURCES:

1. https://archive.nptel.ac.in/courses/110/106/110106044/

AE606808 AIRCRA	FT SYSTEMS A	AND IN	STRU	MENT	S	
Course Cotogowy Vontical 9	Course Type:	L	Т	Р	C	
Course Category: Vertical 8	Theory	3	0	0	3	
COURSE OBJECTIVES:					1	
• To impart knowledge of the hydraulic	and pneumatic s	ystems c	compor	nents		
• To Study the types of instruments and	l its operation incl	luding n	avigati	onal ins	trumen	ts.
• Acquire the knowledge of essential sy	stems of safe airc	craft ope	ration.			
• To learn the concepts of display system	ms					
• To study the various engine systems in	n aircraft					
UNIT 1: AIRCRAFT SYSTEMS						9
Hydraulic systems - Study of typical system	ns – components	s – Hydi	raulic	systems	contro	llers – Modes of
operation – Pneumatic systems – Working p	rinciples – Typic	al Pneu	matic I	Power s	ystem -	- Brake system –
Components, Landing Gear Systems – Classi	fication – Shock	absorber	s – Re	tractive	mechar	nism.
UNIT 2: AIRPLANE CONTROL SYSTEM	AS					9
Conventional Systems – Power assisted and f	fully powered flig	t contr	ols – P	ower ac	tuated s	systems – Engine
control systems – Push pull rod system – oper	rating principles -	- Moder	n conti	ol syste	ms –	
Digital fly by wire systems – Auto pilot syste	m.					
UNIT 3: ENGINE SYSTEMS						9
Piston and Jet Engines- Fuel systems - Co	omponents - Mul	ti-engin	e fuel	systems	s, lubrio	cating systems –
Starting and Ignition systems.						
UNIT 4: AIRCONDITIONING AND PRE	SSURIZING SY	STEM				9
Basic Air Cycle systems – Vapour Cycle Sy	stems, Boot-strap	o air cyc	cle syst	tem – E	vaporat	ive vapour cycle
systems – Evaporation air cycle systems – O:	xygen systems – I	Fire exti	nguish	ing syst	em and	smoke detection
system, Deicing and anti-icing system.						
UNIT 5: AIRCRAFT INSTRUMENTS						9
Flight Instruments and Navigation Instrume	ents – Accelerom	eters, A	ir spee	ed Indic	ators –	Mach Meters -
Altimeters - Gyroscopic Instruments- Prin	nciples and ope	ration –	- Stud	y of v	arious	types of engine
instruments – Tachometers – Temperature an	d Pressure gauges	5.				
					ТОТА	L: 45 PERIODS
COURSE OUTCOMES: At the end of the co	ourse, the student	will be a	ble to			
CO1: Demonstrate the ability to design a vari	ous system using	pneuma	atic and	l hydrau	lic com	ponents.
CO2: Keep abreast knowledge on various flig	ght control system	and its	recent	advance	ements.	
CO3: Demonstrate the fundamental understar	nding of the opera	tion of e	engine	auxiliar	y syster	ns.

CO4: To understand the various cabin comfort system used in aircraft modern display systems.

CO5: Describe the principle behind the operation of various vital parameter displays and its uses in effective conduct of the flight.

CO'S PO'S&PSO'S MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	РО	PO	РО	PSO	PSO	PSO
										10	11	12	1	2	3
CO1	1	-	-	-	-	-	-	-	-	-	-	-	2	1	-
CO2	1	2	2	2	2	-	-	-	-	-	1	-	2	1	-
CO3	1	2	2	2	2	-	-	-	-	-	1	-	2	1	-
CO4	1	2	2	2	2	-	-	-	-	-	1	-	2	1	-
CO5	1	2	2	2	2	-	-	-	-	-	1	-	2	1	-

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Mekinley, J.L. and R.D. Bent, Aircraft Power Plants, McGraw Hill, 1993.

2. Pallet, E.H.J. Aircraft Instruments & Principles, Pitman & Co, 1993.

3. Handbooks of Airframe and Power plant Mechanics, US dept. of Transportation, Federal, Aviation

Administration, the English Book Store, New Delhi, 1995.

REFERENCE BOOKS:

1. McKinley, J.L. and Bent R.D. Aircraft Maintenance & Repair, McGraw Hill, 1993.

2. Teager, S, "Aircraft Gas Turbine technology, McGraw Hill 1997.

WEB RESOURCES:

1. Aircraft Maintenance: https://nptel.ac.in/courses/101104071

AE606809 MEMS													
Comme Coto comme Marth and 9	Course Type:		L	Т	Р	C							
Course Category: Vertical 8	Theory			0	0	3							
COURSE OBJECTIVES:													
To introduce the concepts of micro electromechanical devices													
• To educate on the rudiments of Micro fabrication techniques													
• To introduce the design concepts of micro	• To introduce the design concepts of micro sensors												
• To know the design concepts of micro actuators													
• To educate on the applications of MEMS to various disciplines													
UNIT 1: INTRODUCTION TO MEMS								9					
Introduction to MEMS, Overview of Micro electro mechanical Systems, Materials for MEMS: Silicon,													
silicon compounds, polymers, metals.													
UNIT 2: MEMS FABRICATION TECHNOLOGIES 9													
Photolithography, Ion Implantation, Diffusion, Oxidation, CVD, Sputtering Etching techniques,													
Micromachining: Bulk Micromachining, Surface Micromachining, LIGA.													
UNIT 3: MICRO SENSORS 9													
MEMS Sensors: Design of Acoustic wave senso	ors, Vibratory gyro	osc	cope, (Capaci	tive Pr	essure	e sen	isors, Case					
study: Piezoelectric energy harvester.													
UNIT 4: MICRO ACTUATORS								9					
Design of Actuators: Actuation using thermal for	ces, Actuation usi	ing	shape	e memo	ory All	oys, A	Actua	ation using					
piezoelectric crystals, Actuation using Electrostat	tic forces, Case Stu	udy	y:RF S	witch.									
UNIT 5: APPLICATIONS OF MEMS9													
MEMS for Space Application, Polymer MEMS &	& Carbon Nano Tu	ıbe	es CN	Г, Waf	er Bon	ding a	& Pa	ckaging of					
MEMS, Interface Electronics for MEMS, MEMS for Biomedical Applications (Bio-MEMS).													
					TC	TAL	: 45	PERIODS					
COURSE OUTCOMES: At the end of the course, the student will be able to													
CO1: Interpret the basics of micro electromechanical systems including their applications and advantages													
CO2: Recognize the use of materials in micro	fabrication and de	esci	ribe th	e fabr	ication	proc	esses	including					
surface micromachining, bulk micromachining and LIGA.													
CO3: Comprehend the design concepts of micro sensors.													
CO4: Analyze the key performance aspects of ele	ectromechanical tra	ans	sducer	s inclu	ding ac	tuato	rs						
CO5: Apply MEMS to various disciplines													

CO'S PO'S&PSO'S MAPPING

			PO3 PO4 PO5 PO6 PO7 PO8							PO	PO	PO	PSO	PSO	PSO
	PO1	PO2		PO8	8 PO9	10	11	12	1	2	3				
CO1	1	-	-	-	-	-	-	-	-	-	-	-	1	-	-
CO2	1	2	2	2	2	-	-	-	-	-	1	-	1	-	-
CO3	1	2	2	2	2	-	-	-	-	-	1	-	1	-	-
CO4	1	2	2	2	2	-	-	-	-	-	1	-	1	-	-
CO5	1	2	2	2	2	-	-	-	-	-	1	-	1	-	-

1- low, 2 - medium, 3 - high, '-' no correlation

TEXT BOOKS:

1. Chang Liu, 'Foundations of MEMS', Pearson Education Inc., 2012.

2. Stephen D Senturia, 'Microsystem Design', Springer Publication, 2000.

3. Tai Ran Hsu, "MEMS & Micro systems Design and Manufacture" Tata McGraw Hill, New Delhi, 2002.

REFERENCE BOOKS:

1. Marc Madou, —Fundamentals of Microfabrication^{II}, CRC press 1997.

2. Sergey Edward Lyshevski, —MEMS and NEMS: Systems, Devices, and Structures CRC Press, 2002

3. Nadim Maluf," An Introduction to Micro Electro Mechanical System Design", Artech House, 2000.

WEB RESOURCES:

1. MEMS and Microsystems: https://nptel.ac.in/courses/117105082